
Transfer in Reinforcement Learning with
Successor Features and Generalised Policy Improvement

André Barreto ANDREBARRETO@GOOGLE.COM
Will Dabney WDABNEY@GOOGLE.COM
Rémi Munos MUNOS@GOOGLE.COM
Jonathan Hunt JJHUNT@GOOGLE.COM
Tom Schaul SCHAUL@GOOGLE.COM
David Silver DAVIDSILVER@GOOGLE.COM
Hado van Hasselt HADO@GOOGLE.COM

Google DeepMind

Abstract
We propose a framework for transfer in rein-
forcement learning designed for the scenario
where the reward function changes between tasks
but the environment’s dynamics remain the same.
Our approach rests on two key ideas: gen-
eralised policy improvement, a generalisation
of dynamic programming’s policy improvement
step that considers a set of policies rather than
a single one, and successor features, a represen-
tation scheme that makes it possible to compute
the value function of a policy under any reward
function representable in a given form. Put to-
gether, the two ideas lead to a general transfer
framework that integrates seamlessly within the
reinforcement learning setting.

1. Introduction
In recent years reinforcement learning (RL) has undergone
a major change in terms of the scale of its applications:
from relatively small and well-controlled benchmarks the
field has shifted to problems designed to be challenging for
humans—who are now consistently outperformed by arti-
ficial agents in domains considered out of reach only a few
years ago (Mnih et al., 2015; Bowling et al., 2015; Silver
et al., 2016). Although there is still work to be done in the
single-task RL setting, the question of how to design agents
that can tackle multiple tasks seems now more relevant than
ever. This inevitably brings about the subject of transfer.

Transfer refers to the notion that an agent should be able to
generalise not only within a task but also across tasks (Tay-
lor & Stone, 2009; Lazaric, 2012). This of course raises the

Accepted at Lifelong Learning: A Reinforcement Learning Ap-
proach Workshop @ICML, Sydney, Australia, 2017. Copyright
2017 by the author(s).

question of what exactly a task is; here we adopt the view
that a task is any partial accomplishment that will help the
agent achieve its objectives in the long run. The specific
way in which we make this definition concrete is to assume
that the environment has fixed dynamics and each task cor-
responds to a different reward function.

Ideally, we want a transfer approach to have two impor-
tant properties. First, the flow of information between tasks
should not be dictated by a rigid diagram that reflects the re-
lationship between the tasks themselves, such as hierarchi-
cal or temporal dependencies. On the contrary, information
should be exchanged between tasks whenever useful. Sec-
ond, rather than being posed as a separate problem, transfer
should be integrated within RL as much as possible, prefer-
ably in a way that is transparent to the agent.

In this paper we propose an approach for transfer that has
the two properties above. Our method builds on two con-
ceptual pillars that complement each other. The first is a
generalisation of Bellman’s (1957) classic policy improve-
ment theorem that extends the original result from one to
multiple decision policies. The second pillar of our frame-
work is a generalisation of Dayan’s (1993) successor repre-
sentation (SR) that makes it possible to compute the value
function of a policy under any reward function that can
be represented in a given form. Put together, these two
ideas lead to a general framework that naturally incorpo-
rates transfer into the standard RL setting.

2. Background and Problem Formulation
As usual, we assume that the interaction between agent and
environment can be modeled as a Markov decision pro-
cess (MDP, Puterman, 1994). An MDP is defined as a tu-
ple M ≡ (S,A, p, R, γ). The sets S and A are the state
and action spaces, respectively. For each s ∈ S and each
a ∈ A the function p(·|s, a) gives the next-state distribu-
tion upon taking action a in state s. We will often refer

Transfer with Successor Features and Generalised Policy Improvement

to p(·|s, a) as the dynamics of the MDP. The reward re-
ceived at transition s a−→ s′ is given by the random vari-
able R(s, a, s′); often one is interested in the expected
value of this variable, which we will denote by r(s, a, s′) or
by r(s, a) = ES′∼p(·|s,a)[r(s, a, S

′)]. The discount factor
γ ∈ [0, 1) gives smaller weights to future rewards.

The goal of the agent in RL is to find a policy π—a
mapping from states to actions—that maximises the ex-
pected discounted sum of rewards, also called the return
Gt =

∑∞
i=0 γ

iRt+i, where Rt = R(St, At, St+1). One
way to address this problem is to use methods derived from
dynamic programming (DP), which heavily rely on the con-
cept of a value function (Puterman, 1994). The action-
value function of a policy π is defined as

Qπ(s, a) ≡ Eπ [Gt |St = s,At = a] , (1)

where Eπ[·] denotes expected value when following pol-
icy π. Once the value function of a policy π is known, we
can derive a new policy π′ that is greedy with respect to
Qπ(s, a), that is, π′(s) ∈ argmaxaQ

π(s, a). Policy π′ is
guaranteed to be at least as good as (if not better than) π.
The computation of Qπ(s, a) and π′, called policy evalua-
tion and policy improvement, define the basic mechanics of
RL algorithms based on DP (Sutton & Barto, 1998).

In this paper we are interested in the problem of transfer
when all components of an MDP are fixed except for the
reward function. We now discuss one possible way of for-
malising this scenario. Suppose that the expected one-step
reward associated with transition (s, a, s′) is given by

r(s, a, s′) = φ(s, a, s′)>w, (2)

where φ(s, a, s′) ∈ Rd are features of (s, a, s′) and w ∈
Rd are weights. Supposing that (2) is true is not restric-
tive because we are not making any assumptions about
φ(s, a, s′): if we have φi(s, a, s′) = r(s, a, s′) for some
i, for example, we can clearly recover any reward function.

If we fix the function φ(s, a, s′) : S × A × S 7→ Rd, any
w ∈ Rd gives rise to a new MDP. Based on this observa-
tion, we define

Mφ(S,A, p, γ)≡ {M(S,A, p, r, γ)|r(s, a, s′)= φ(s, a, s′)>w},
(3)

that is, Mφ is the set of MDPs induced by φ through all
possible instantiations of w. Since what differentiates the
MDPs inMφ is only the agent’s goal, we will refer toM ∈
Mφ as a task. LetMi be a task inMφ defined by wi ∈ Rd.
We will use π∗i to refer to an optimal policy of MDPMi and
useQ

π∗
i
i to refer to its value function. The value function of

π∗i when executed in Mj ∈Mφ will be denoted by Q
π∗
i
j .

Our goal is to solve (a subset of) the tasks in the environ-
ment Mφ. Since the tasks are related, we would like to
transfer knowledge accumulated in previous tasks to speed

up learning in a new task. More specifically, we formulate
the problem of transfer as follows. LetM,M′ ⊂ Mφ be
two sets of tasks such that M′ ⊂ M, and let M be any
task. Then we say there is transfer if, after training onM,
the agent always performs as well or better on task M than
if only trained onM′. Note thatM′ can be the empty set.

3. Generalised Policy Improvement
One of the key results in DP is Bellman’s (1957) policy im-
provement theorem. Basically, the theorem states that act-
ing greedily with respect to a policy’s value function gives
rise to another policy whose performance is no worse than
the former’s. This is the driving force behind DP, and most
RL algorithms that use the notion of a value function are
exploiting Bellman’s result in one way or another.

In this section we extend the policy improvement theorem
to the scenario where the new policy is to be computed
based on the value functions of a set of policies. We show
that this extension can be done in a very natural way, by
simply acting greedily with respect to the maximum over
the value functions available. Our result is summarized in
the theorem below.

Theorem 1. (Generalised Policy Improvement) Let π1,
π2, ..., πn be n decision policies and let Q̃π1 , Q̃π2 , ...,
Q̃πn be approximations of their respective action-value
functions such that |Qπi(s, a) − Q̃πi(s, a)| ≤ ε for all
s ∈ S , a ∈ A, and i ∈ {1, 2, ..., n}. Define π(s) ∈
argmaxamaxi Q̃

πi(s, a). Then,

Qπ(s, a) ≥ max
i
Qπi(s, a)− 2

1− γ
ε (4)

for any s ∈ S and any a ∈ A, whereQπ is the action-value
function of π.

The proofs of our theoretical results are available in an ex-
tended version of this paper (Barreto et al., 2016). As one
can see, our theorem covers the case in which the policies’
value functions are not computed exactly, either because
function approximation is used or because some exact al-
gorithm has not be run to completion. This error is captured
by ε, which of course re-appears as a “penalty” term in the
lower bound (4). Such a penalty is inherent to the presence
of approximation in RL (Bertsekas & Tsitsiklis, 1996).

In order to contextualize generalised policy improvement
(GPI) within the broader scenario of DP, suppose for a
moment that ε = 0. In this case Theorem 1 states
that π will perform no worse than all of the policies π1,
π2, ..., πn starting from any state. It is not difficult to see
that π will be strictly better than all previous policies if
no single policy dominates all other policies, that is, if
argmaximaxa Q̃

πi(s, a) ∩ argmaximaxa Q̃
πi(s′, a) = ∅

for any s, s′ ∈ S . If one policy does dominate all others,

Transfer with Successor Features and Generalised Policy Improvement

GPI reduces to the original policy improvement theorem.

GPI provides a principled way of combining multiple poli-
cies into a single policy whose performance is generally
better than that of its constituents. In the context of trans-
fer, this makes it possible to leverage knowledge accumu-
lated over many tasks to learn a new task faster. Sup-
pose that an agent has computed optimal policies for tasks
M1,M2, ...,Mn ∈ Mφ. Suppose also that when exposed
to a new task Mn+1 the agent computes Q

π∗
i
n+1—the value

functions of the policies π∗i under the new reward function
induced by wn+1. In this case, applying GPI to the newly-
computed set of value functions {Qπ

∗
1
n+1, Q

π∗2
n+1, ..., Q

π∗n
n+1}

will give rise to a policy that performs at least as well as
a policy computed based on any subset of the set above,
including the empty set. Therefore, GPI satisfies our defi-
nition of successful transfer.

There is a caveat, though. Why would one waste time com-
puting the value functions of π∗1 , π

∗
2 , ..., π∗n, whose perfor-

mance in Mn+1 may be mediocre, if the same amount of
resources can be allocated to compute a sequence of n poli-
cies with increasing performance? This is where successor
features come into play, as we discuss next.

4. Successor Features
We start this section by simplifying our notation slightly
with the definitionφt = φ(st, at, st+1). Now, plugging (1)
into (2) we have

Qπ(s, a) = Eπ
[
φ>t+1w + γφ>t+2w + ... |St = s,At = a

]
= Eπ

[∑∞
i=tγ

i−tφi+1 |St = s,At = a
]>

w

= ψπ(s, a)>w. (5)

The decomposition (5) has appeared before in the liter-
ature under different names and interpretations (Barreto
et al., 2016). Since here we see (5) as an extension of
Dayan’s (1993) SR, we callψπ(s, a) the successor features
(SFs) of (s, a) under policy π.

The ith component of ψπ(s, a) gives the discounted sum
of φi when following policy π starting from (s, a). In the
particular case where S and A are finite and φ is a tabu-
lar representation of S × A × S the vector ψπ(s, a) is the
discounted sum of occurrences, under π, of each possible
transition. This is essentially the concept of SR extended
from the space S to the set S ×A×S (Dayan, 1993). SFs
also extend SR in two other ways. First, the concept read-
ily applies to continuous state and action spaces without
any modification. Second, by explicitly casting (2) and (5)
as inner products involving feature vectors, SFs make it ev-
ident how to incorporate function approximation: as will
be shown, these vectors can be learned from data.

The SFs ψπ summarize the dynamics induced by π in a

given environment. As shown in (5), this allows for a mod-
ular representation of Qπ in which the MDP’s dynamics
are decoupled from its rewards, which are captured by the
weights w. One potential benefit of having such a decou-
pled representation is that only the relevant module must be
relearned when either the dynamics or the reward changes.

The representation in (5) requires two components to be
learned, w and ψπ . Since the latter is the expected dis-
counted sum of φ under π, we must either be given φ
or learn it as well. Note that approximating r(s, a, s′) ≈
φ(s, a, s′)>w̃ is a supervised learning problem, allowing
the use of well-understood techniques to learn w̃ (and po-
tentially φ̃, too) (Hastie et al., 2002). As for ψπ , we note
that

ψπ(s, a) = Eπ[φt+1 + γψπ(St+1, π(St+1)) |St = s,At = a],
(6)

that is, SFs satisfy a Bellman equation in which φi play the
role of rewards. Therefore, in principle any RL method can
be used to compute ψπ (Szepesvári, 2010).

5. GPI with SFs
Now that we have presented GPI and SFs we are ready to
describe our framework for transfer. In order to do so, we
go back to the scenario discussed in the end of Section 3,
in which we have learned policies π∗i associated with tasks
Mi induced by weight vectors wi.

Suppose that we have learned the functions Q
π∗
i
i using the

representation scheme shown in (5). Now, if the reward
changes to rn+1(s, a, s

′) = φ(s, a, s′)>wn+1, as long as
we have wn+1 we can compute the new value function
of π∗i by simply making Q

π∗
i
n+1(s, a) = ψπ∗

i (s, a)>wn+1.
This reduces the computation of all Q

π∗
i
n+1 to the problem

of defining wn+1. In some cases we can assume that wn+1

is provided by the environment or can be inferred from the
observations. However, even when the only signal indicat-
ing that the task has changed is the reward itself, wn+1 can
be computed via supervised learning in order to minimise
some loss derived from (2) (see experiments below).

Once Q
π∗
i
n+1 have been computed, we can apply GPI to de-

rive a policy π whose performance on Mn+1 is no worse
than the performance of π∗1 , π

∗
2 , ..., π

∗
n on the same task. A

question that arises in this case is whether we can provide
stronger guarantees on the performance of π by exploiting
the structure shared by the tasks in Mφ. The following
theorem answers this question in the affirmative.

Theorem 2. Let Mi ∈Mφ and let Q
π∗
j

i be the value func-
tion of an optimal policy of Mj ∈ Mφ when executed in
Mi. Given approximations {Q̃π

∗
1
i , Q̃

π∗2
i , ..., Q̃

π∗n
i } such that∣∣∣Qπ∗

j

i (s, a)− Q̃
π∗
j

i (s, a)
∣∣∣ ≤ ε for all s ∈ S, a ∈ A, and

j ∈ {1, 2, ..., n}, let π(s) ∈ argmaxamaxj Q̃
π∗
j

i (s, a). Fi-

Transfer with Successor Features and Generalised Policy Improvement

nally, letφmax = maxs,a ||φ(s, a)||, where ||·|| is the norm
induced by the inner product adopted. Then,

Q
π∗
i
i (s, a)−Qπi (s, a) ≤

2

1− γ
(φmax minj ||wi −wj ||+ ε) .

(7)

Note that we used “Mi” rather than “Mn+1” in the theo-
rem’s statement to remove any suggestion of order among
the tasks. As shown in (7), the loss Q

π∗
i
i (s, a)−Qπi (s, a) is

upper-bounded by two terms. The term 2φmaxminj ||wi −
wj ||/(1− γ) is of more interest here because it reflects the
structure of Mφ. This term is a multiple of the distance
between wi, the task we are currently interested in, and the
closest wj for which we have computed a policy. This for-
malises the intuition that the agent should perform well in
task wi if it has solved a similar task before.

Although Theorem 2 is inexorably related to the character-
ization ofMφ in (3), it does not depend on the definition of
SFs in any way. Here SFs are the mechanism used to effi-
ciently apply the protocol suggested by Theorem 2. When
SFs are used the value function approximations are given
by Q̃

π∗
j

i (s, a) = ψ̃
π∗
j (s, a)>w̃i. The modules ψ̃π∗

j are
computed and stored when the agent is learning the tasks
Mj , which can be done sequentially or in parallel. When
faced with a new task Mi the agent computes an approxi-
mation of wi, which is a supervised learning problem, and
then follows the GPI policy π defined in Theorem 2. Note
that we do not assume that either ψπ∗

j or wi is computed
exactly: the effect of errors in ψ̃π∗

j and w̃i in the approx-
imation of Q

π∗
j

i (s, a) is accounted for by the term ε. As
shown in (7), if ε is small and the agent has seen enough
tasks the performance of π on Mi should already be good,
which means that the agent should be able to perform well
without the need to compute a new policy. Of course, one
can use the data collected by π to learn a new ψ̃π∗

i , which
can then be added to our set of SFs, restarting the loop.

Interestingly, Theorem 2 also provides guidance for some
practical algorithmic choices. Since in an actual implemen-
tation one wants to limit the number of SFs ψ̃π∗

j stored in
memory, the corresponding vectors w̃j can be used to de-
cide which ones to keep. For example, if the maximum
number of SFs is reached at task w̃i, the new ψ̃π∗

i can re-
place ψ̃π∗

k , where k = argminj ||w̃i − w̃j ||.

6. Experiments
We now present empirical results to provide some intuition
on how the proposed framework works in practice. The
environment we consider involves navigation tasks defined
over a two-dimensional continuous space composed of four
“rooms” (Fig. 1). The agent starts in one of the rooms and
must reach a goal region located in the farthest room. The
environment has objects that can be picked up by the agent

Figure 1. Environment layout and some examples of optimal tra-
jectories associated with specific tasks. The shapes of the objects
represent their classes; ‘S’ is the start state and ‘G’ is the goal.

by passing over them. There is a total of no objects, each
belonging to one of nc ≤ no classes. The class of an object
determines the reward rc associated with it—that is, two
objects of class c always lead to the same reward rc. The
rewards rc can be positive, negative, or zero. There is also
a positive reward rg associated with the goal. The objective
of the agent is to pick up the “good” objects and navigate
to the goal while avoiding “bad” objects. An episode ends
when the agent reaches the goal, upon which all the objects
re-appear. Figure 1 shows the specific environment layout
used, in which no = 12 and nc = 3.

We assume that rg is always 1 but rc may vary: a specific
instantiation of the rewards rc defines a task. In our ex-
periments each task lasts for 2× 104 transitions, and when
a new task starts the rewards rc are sampled from a uni-
form distribution over [−1, 1]. Our environment is thus pre-
sented as an infinite stream of tasks. Looking at Figure 1
one can see that different tasks may require quite distinct
behaviours: the goal of the agent is to maximise the sum of
rewards accumulated over a sequence of 250 tasks.

We focus on the online RL scenario where the agent must
learn while interacting with the environmentM. As shown
in Algorithm 1, we defined a straightforward instantia-
tion of our approach in which both w̃ and ψ̃

π
are com-

puted incrementally in order to minimise losses induced
by (2) and (6). Every time the task changes the cur-
rent ψ̃

πi is stored and a new ψ̃
πi+1 is created. We call

this method “SFQL” as a reference to the fact that SFs
are learned through an algorithm analogous to Watkins &
Dayan’s (1992) Q-learning (QL). Also due to this sim-
ilarity we use QL itself as a baseline for our compar-
isons. As a more challenging reference point we report
results for a transfer method called probabilistic policy
reuse (Fernández et al., 2010). The version of the algorithm
we adopt builds on QL and reuses all policies learned. The
resulting method, PRQL, is directly comparable to SFQL.

We assume that the agents know their position {sx, sy} ∈
[0, 1]2 and also have an “object detector” o ∈ {0, 1}no
whose ith component is 1 if and only if the agent is over

Transfer with Successor Features and Generalised Policy Improvement

Algorithm 1 SFQL

Require:
φ features to be predicted by SFs
ε parameter for ε-greedy strategy
αz, αw learning rates

1: for t← 1, 2, ...,num tasks do
2: wt ← small random initial values
3: zt ← random values // zt are the parameters of ψ̃t
4: new eps← true
5: for i← 1, 2, ...,num steps do
6: if new eps then
7: new eps← false
8: s← initial state
9: sel rand a ∼ Bernoulli(ε) // true with probability ε

10: if sel rand a then a ∼ Uniform ({1, 2, ..., |A|})
11: else a← argmaxbmaxk∈{1,2,...,t} ψ̃k(s, b)

>wt

12: Execute a and observe reward r and next state s′

13: if s′ is terminal then γ ← 0 and new eps← true
14: else a′ ← argmaxbmaxk∈{1,2,...,t} ψ̃k(s

′, b)>wt

15: wt ← wt + αw
[
r − φ(s, a, s′)>w

]
φ(s, a, s′)

16: for k ← 1, 2, ..., d do
17: δk ← φk(s, a, s

′) + γψ̃tk(s
′, a′)− ψ̃tk(s, a)

18: ztk ← ztk + αzδk∇zψ̃tk(s, a)
19: s← s′

object i. Using this information the agents build two vec-
tors of features. The vector ϕp(s) ∈ R100 is composed of
the activations of a regular 10 × 10 grid of Gaussian func-
tions at the point {sx, sy}. In addition, using o the agents
build an “inventory” ϕi(s) ∈ {0, 1}no whose ith compo-
nent indicates whether the ith object has been picked up or
not. The concatenation of ϕi(s) and ϕp(s) plus a constant
term gives rise to the feature vector ϕ(s) ∈ RD used by
all the agents to represent the value function: Q̃π(s, a) =
ϕ(s)>zπa , where zπa ∈ RD are learned weights.

It is instructive to take a closer look at how exactly SFQL
represents the value function. Note that, even though our
algorithm also represents Q̃π as a linear combination of
the features ϕ(s), it never explicitly computes zπa . Specif-
ically, SFQL represent SFs as ψ̃

π
(s, a) = ϕ(s)>Zπa ,

where Zπa ∈ RD×d, and the value function as Q̃π(s, a) =
ψ̃
π
(s, a)>w̃ = ϕ(s)>Zπaw̃. By making zπa = Zπaw̃, it be-

comes clear that SFQL unfolds the problem of learning zπa
into the sub-problems of learning Zπa and w̃. These param-
eters are learned via gradient descent in order to minimise
losses induced by (6) and (2), respectively (see Alg. 1).

By associating each object in o with its class, the SFQL
agent can easily construct features φ ∈ Rnc+1 that per-
fectly predicts the reward for all M ∈ Mφ, as in (2)
and (3). In our experiments we compared two versions
of SFQL. In the first one, called SFQL-φ, we assume
that the agent knows φ. The second version of our agent

φ̃(s, a, s′)>w̃t max
a,i<t

ψ̃i(s, a)
>w̃t max

a,i≤t
ψ̃i(s, a)

>w̃t

Figure 3. Functions computed by SFQL after 200 transitions into
two randomly selected tasks (all objects present).

had to learn the mapping above directly from data, replac-
ing the handcrafted φ with an approximation φ̃ ∈ Rh.
Note that h may not coincide with the “real” d, which
in this case is nc + 1 = 4. The process of learning
φ̃ followed the multi-task learning protocol proposed by
Caruana (1997) and Baxter (2000). In summary, SFQL
used plain QL to collect data for 20 tasks, and then used
this data to compute an approximation φ̃(s, a, s′)>w̃t =
ς
(
ϕ(s, s′)>H

)
w̃t ≈ rt(s, a, s

′) for t = 1, 2, ..., 20,
where ϕ(s, s′) = [ϕ(s),ϕ(s′)], ς(·) is a sigmoid function
applied element-wise, H ∈ RD×h are the weights defin-
ing φ̃, and rt(·) is the reward function of task t. Since we
used different values for h, we refer to the corresponding
instances of our algorithm as SFQL-h.

The results of our experiments are shown in Figure 2. As
shown, all versions of SFQL significantly outperform the
other two methods, with an improvement on the average re-
turn of more than 100% when compared to PRQL, which it-
self improves on QL by around 100%. Interestingly, SFQL-
h seems to achieve good overall performance faster than
SFQL-φ, even though the latter uses features that allow for
an exact representation of the rewards. One possible expla-
nation is that, unlike their counterparts φi, the features φ̃i
are activated over most of the set S ×A×S , which results
in a dense pseudo-reward signal that facilitates learning.

More generally, the good performance of SFQL seems to
be a direct consequence of the transfer promoted by the
combination of GPI and SFs, as illustrated in Figure 3.
Note how after only 200 transitions into a new task SFQL
already has a good approximation of the reward function,
which, combined with the set of previously computed ψ̃

πi ,
with i < t, provide a very informative value function even
without the current ψ̃

πt .

7. Conclusion
This paper builds on two concepts, GPI and SFs. GPI can
be seen as a principled way of turning a collection of poli-

Transfer with Successor Features and Generalised Policy Improvement

Q-Learning
PRQL

SFQL-! / SFQL-4

SFQL-8

Figure 2. Average and cumulative return per task in the four-room domain. SFQL-h received no reward during the first 20 tasks while
learning φ̃. Error-bands show one standard error over 30 runs.

cies into a policy whose performance is generally better
than that of its precursors. Following a fundamental prin-
ciple in RL, we would like the individual policies to be
learned in a goal-oriented way—that is, by trying to max-
imise a given reward signal. However, if each policy is
induced by a different signal, the resulting value functions
will reflect their performance under distinct criteria, and
thus GPI no longer applies. More generally, the difficulty in
handling value functions computed under different reward
signals represents an obstacle for using the DP machinery
in multi-task scenarios, which may be one of the reasons
why transfer is often posed as a separate problem outside
of the RL setting. SFs resolve this issue by allowing one to
efficiently compute the value function of a policy under any
reward function that can be represented in a given form.

By combining GPI and SFs, one is able to leverage knowl-
edge that has been acquired in a purposeful, goal-oriented,
way. How precisely this takes place will reflect the speci-
ficities of the scenario of interest, and may give rise to dif-
ferent transfer approaches. For example: the individual
policies can be learned in sequence or in parallel, with the
corresponding tasks reflecting some structure of the prob-
lem or organized by level of difficulty, by some notion of
similarity, or even in a hierarchical way. All these instantia-
tions can be naturally accommodated under our framework,
which we believe to be an elegant extension of DP’s basic
setting that provides a solid foundation for transfer in RL.

References
Barreto, André, Munos, Rémi, Schaul, Tom, and Silver, David.

Successor features for transfer in reinforcement learning.
CoRR, abs/1606.05312, 2016.

Baxter, Jonathan. A model of inductive bias learning. Journal of
Artificial Intelligence Research, 12:149–198, 2000.

Bellman, Richard E. Dynamic Programming. Princeton Univer-
sity Press, 1957.

Bertsekas, Dimitri P. and Tsitsiklis, John N. Neuro-Dynamic Pro-
gramming. Athena Scientific, 1996.

Bowling, Michael, Burch, Neil, Johanson, Michael, and Tam-
melin, Oskari. Heads-up limit hold’em poker is solved. Sci-
ence, 347(6218):145–149, 2015.

Caruana, Rich. Multitask learning. Machine Learning, 28(1):
41–75, 1997.

Dayan, Peter. Improving generalisation for temporal difference
learning: The successor representation. Neural Computation,
5(4):613–624, 1993.

Fernández, Fernando, Garcı́a, Javier, and Veloso, Manuela. Prob-
abilistic policy reuse for inter-task transfer learning. Robotics
and Aut. Systems, 58(7):866–871, 2010.

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome. The
Elements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer, 2002.

Lazaric, Alessandro. Transfer in Reinforcement Learning: A
Framework and a Survey, in Reinforcement Learning: State-
of-the-Art. pp. 143–173. 2012.

Mnih et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

Puterman, Martin L. Markov Decision Processes—Discrete
Stochastic Dynamic Programming. John Wiley & Sons, 1994.

Silver et al. Mastering the game of go with deep neural networks
and tree search. Nature, 529:484–503, 2016.

Sutton, Richard S. and Barto, Andrew G. Reinforcement Learn-
ing: An Introduction. MIT Press, 1998.

Szepesvári, Csaba. Algorithms for Reinforcement Learning. Syn-
thesis Lectures on Artificial Intelligence and Mach. Learning.
Morgan & Claypool Publishers, 2010.

Taylor, Matthew E. and Stone, Peter. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research, 10(1):1633–1685, 2009.

Watkins, Christopher and Dayan, Peter. Q-learning. Machine
Learning, 8:279–292, 1992.

