
Entropic Policy Composition with Generalized Policy
Improvement and Successor Features

Jonathan J Hunt1, Andre Barreto1, Timothy P Lillicrap1, 2, Nicolas Heess1

jjhunt, andrebarreto, countzero, heess @ google.com
1DeepMind, 2University College London

Abstract

Transferring and generalizing previously learned solutions to new tasks is a promis-
ing avenue for improving data efficiency in reinforcement learning (RL). The
maximum entropy (max-ent) RL framework trades off task reward with trajectory
entropy and it has been demonstrated that the resulting policies can be composed
to obtain solutions to new tasks by summing their action-value functions. Here
we introduce an alternative approach to compositionality in high-dimensional
continuous action spaces. Successor features (SF) provide a mechanism for de-
composing value functions into dynamics and reward and have previously been
used for transfer in small discrete action spaces. We introduce a maximum entropy
formulation of successor features (MESF), as well as of Generalized Policy Im-
provement (GPI), which provides a principled approach to combining multiple
existing policies to solve a new task. In a tabular setting we show the similari-
ties and differences between different policy composition schemes and show that
GPI/MESF can perform well compared to the simple sum of action-value functions
in certain circumstances. We also provide a practical algorithm for GPI/MESF for
high-dimensional continuous action spaces and provide results on an 8-DOF ant.

1 Introduction

Transfer in RL has been formalized in many ways. Here, we focus on model-free motor control, a
scalable approach with some notable recent successes[e.g. 14, 17, 11].

We restrict transfer to composition of task rewards. Specifically, we are interested in the following
question: If we have previously solved a set of tasks with similar transition dynamics but different
reward functions, how can we leverage this knowledge to solve new tasks which can be expressed as
a convex combination of those rewards functions?

Transfer in this setting has recently been studied in two independent lines of work: by Barreto et al.
[2, 3] with deterministic policies in small discrete action spaces, and by Haarnoja et al. [8] in the
context of maximum entropy (max-ent) policies in continuous action spaces. These approaches
operate in distinct frameworks but both achieve skill composition by combining the action-value
functions associated with previously learned skills. Related work [18, 16, 20] demonstrated optimal
composition of max-ent policies, but only by imposing strong assumptions on the class of MDPs.

We introduce max-ent Successor Features (MESF) and extend GPI to the max-ent framework,
including providing a perspective on max-ent GPI as a form of approximate inference. We clar-
ify the relationship between GPI/MESF and [8] in a tabular setting, and demonstrate a practical
implementation of max-ent GPI in continuous action spaces using adaptive importance sampling.

Infer to Control: NIPS 2018 Workshop on Probabilistic Reinforcement Learning and Structured Control.

2 Background

2.1 Multi-task RL

We consider Markov Decision ProcessesM defined by a state space S , action space A, a start state
distribution p(s1), a transition function p(st+1|st, at), a discount γ ∈ [0, 1) and a reward function
r(st, at). The standard RL objective is to find a policy π(a|s) : S → P(A) which maximises the
discounted expected return from any state.

We formalize transfer as in [2, 8], as the desire to perform well across tasks inM∈ T ′ after having
learned policies for tasksM ∈ T , without additional experience. We assume that T and T ′ are
related in two ways: all tasks share the same state transition function, and tasks in T ′ can be expressed
as convex combinations of rewards associated with tasks in set T . So if we write the reward functions
for tasks in T as the vector φ = (r1, r2, . . .), tasks in T ′ can be expressed as rw = φ ·w.

2.2 Successor Features

Successor Features (SF) [5] and Generalised Policy Improvement (GPI) [2, 3] provide a principled
solution to transfer in the setting defined above. SF makes the additional assumption that the reward
feature φ is fully observable, that is, the agent has access to the rewards of all tasks in T during
training on each individual task.

The key observation of SF representations is that linearity of the reward rw with respect to the features
φ allows the action value Qπ of policy π to be decomposed as

Qπw(st, at) = Eπ

[∞∑
τ=t

γτ−tφτ ·w|at

]
= Eπ

[∞∑
i=t

γτ−tφτ |at

]
·w ≡ ψπ(st, at) ·w, (1)

where ψπ is the expected discounted sum of features φ induced by policy π. This decomposition
allows us to compute the action-value for π on any task w by learning ψπ .

2.3 Maximum Entropy RL

The max-ent RL objective arises naturally from an RL as inference perspective [13]1. In this
framework, the RL problem is reframed as one of posterior inference by introducing binary random
variables indicating optimality p(Ot = 1|st, at) = exp(1

αr(st, at)) where α acts as a temperature.

The RL problem then becomes one of inference to find the posterior distribution p(at|st,Ot:T = 1)
(see [13, fig 1b] for the graphical model). This inference problem can be solved with a single
backwards pass of belief propagation with the messages

βt(st, at) = p(Ot:T |st, at) =
∫
S βt+1(st+1)p(st+1|st, at)p(Ot|st, at)dst+1 (2)

and βt(st) = p(Ot:T |st) =
∫
A p(Ot:T |st, at)p(at|st)dat =

∫
A βt(st, at)dat where we’ve assumed

an uninformative prior on at.

Given this message the optimal action distribution is
p(at|st,Ot:T) ∝ p(Ot:T |st, at)p(at|st) = β(st, at) (3)

Again using the assumption that the action prior is uninformative. This policy can be shown to
maximise the RL objective augmented with an entropy term, which favors more entropic trajectories
and has been considered in a number of works [e.g. 12, 18, 7, 8, 22, 6].

The messages have intuitive interpretations as the optimal soft Q action-value Q∗(st, at) =
α log βt(st, at) and value V ∗(st) = α log βt(st).

2.4 Optimistic Policy Composition

Haarnoja et al. [8] introduced a simple approach to policy composition with max-ent policies for
transfer to a new task rw by adding the action-values of the component tasks

QOptw (s, a) ≡
∑
i wiQ

i(s, a) (4)

1As in the initial derivation in [13], we focus on deterministic dynamics, without discounting and with
negative rewards. All of these restrictions can be removed without significantly modifying the conclusions.

2

The Boltzmann policy defined by QOpt, πOpt(a|s) ∝ exp(1
αQ

Opt
w (s, a)), is the product distribution

of the component policies. We refer to πOpt as the “optimistic” policy, as it acts according to the
optimistic assumption that the optimal returns of all subtasks will be, simultaneously, achievable.

3 Max-Ent Policy Composition with GPI

3.1 Max-Ent Successor Features

We introduce max-ent SF, which provides a practical method for computing the value of a max-ent
policy under any convex combination of rewards. We then formulate GPI [2] for max-ent policies.

We define the action-dependent SF to include the entropy of the policy, excluding the current state,
analogous to the max-entropy definition of Qπ:

ψπ(st, at) ≡ φt + γEp(st+1|st,at) [Υ
π(st+1)] (5)

where 1 is a vector of ones of the same dimensionality as φ and we define the state-dependent
successor features as the expected ψπ in analogy with V π(s):

Υπ(s) ≡ Ea∼π(·|s) [ψπ(s, a)] + α1 ·H[π(·|s)]. (6)

Max-ent SF allow us to compute the soft action-value of π on any task rw
2 of rewards w as

Qπw(s, a) = ψπ(s, a) ·w.

3.2 Max-Ent Generalized Policy Improvement

We first outline Max-Ent GPI from an approximate inference perspective. In the exact inference case
we can obtain the optimal policy from the message p(at|st,Ot:T) ∝ β(st, at). Now, we consider
the case where we do not have access to the message β(st, at) = p(Ot:T |st, at) but only a set
of approximate messages {βi(st, at)}. These messages convey the probability of achieving an
optimal return while following policy πi for all future actions βi(st, at) = p(Ot:T |st, at, πi). One
interpretation is to consider performing approximating inference using messages from a related, but
not identical graphical model3. Importantly, β(st, at) ≥ βi(st, at) since β(st, at) is the probability
of an optimal trajectory under the optimal policy. The max-ent successor features described above
describe one practical method for computing βi(st, at) for a new task from a set of existing policies.

Since each βi(st, at) is a lower-bound on p(Ot:T |st, at), we use the tightest lower bound to estimate
the posterior p(at|st,Ot:T) ∝ p(O)t:T |st, at) ≈ maxi β

i(st, at).

We restate this in RL terms and provide a proof to support the intuition that the max-ent value of this
estimate is at least as good as following any single estimate pi(at|st,Ot:T) ∝ βi(st, at).

Theorem 3.1 (Max-Ent Generalized Policy Improvement) Let π1, π2, ..., πn be n policies with
α-max-ent action-value functions Q1, Q2, ..., Qn and value functions V 1, V 2, ..., V n. Define

π(a|s) ∝ exp
(
1
α maxiQ

i(s, a)
)
.

Then,
Qπ(s, a) ≥ max

i
Qi(s, a) for all s ∈ S and all a ∈ A, (7)

V π(s) ≥ max
i
V i(s) for all s ∈ S, (8)

where Qπ(s, a) is the α-max-ent action-value function of π, and V π(s) is the max-ent state-value
function of π.

Proof: See appendix A.1. Practically, GPI/MESF provides a principled approach to composing
entropic policies for transfer. During training, we learn the successor features for ψπi(s, a) for each
policy. For transfer this provides us the value of existing policies on a new task, and we use max-ent
GPI to combine all existing policies. In contrast to the optimistic transfer, GPI acts conservatively
by estimating the future value as a lower-bound on its true value. Note that although GPI values the
future under existing policies, the GPI policy is not a mixture of existing policies.

2w must be convex. The constraint on convexity arises to ensure 1H[π(·|s)] · w = H[π(·|s), so the
temperature of all policies is identical.

3This model has the same dynamics but different Ot

3

4 Implementation and Experiments

Sampling the Boltzmann policies defined by Q is challenging, particularly during transfer. We
use importance sampling with learned proposal distributions to approximate our policies. We
use a mixture of normal distributions for the proposal distribution so that the product of proposal
distributions can be sampled efficiently. When comparing with optimistic composition we use the
same base policies and train on the same experience for both approaches. Details of the algorithm are
in appendix B.

We first consider some illustrative tabular cases of compositional transfer. These highlight the
complementary performance of GPI/MESF and optimistic transfer (figure 1).

(a) (L)eft task (b) Opt LR (e) GPI LU(c) GPI LR (d) Opt LU

Figure 1: Tabular policy composition Tasks are in an infinite-horizon tabular 8x8 world. The action
space is the 4 diagonal movements (actions at the boundary transition back to the same state) (a) The
left task rl (color indicates reward) with arrows showing the optimal max-ent policy. (b-c) Transfer
to task LR rlr = 1

2rl +
1
2rr. These tasks are not compatible so optimistic transfers results in an

indecisive policy (arrows show policy, color shows value) while GPI performs well. Right rr and
up ru tasks are defined similarly. (d-e) For left-up the policies are compatible, so optimistic transfer
performs well, GPI acts conservatively according to the lower bound and performs marginally worse.

We demonstrate our algorithm and transfer on an 8 DOF ant with a continous action space (figure 2) 4.
In this task, the policies are not compatible, so optimistic transfer performs poorly, while GPI/MESF
acts conservatively and performs well.

(a) (b) (c)

Figure 2: (a) Transfer on an 8-DOF ant. The two base tasks consist of rewards for reaching the
red and green squares. We compared GPI/MASF against optimistic for the composed task. (b)
Trajectories from the composed task. Optimistic attempts to “get the best of both worlds” while GPI
is more conservative. (c) Box-plot of the returns for the compositional task from 5 seeds.

5 Conclusion

Here we have introduced GPI/MESF. We provided an inference perspective of max-ent GPI, as a
variational approximation of the optimal posterior. We demonstrated a practical algorithm for making
use of these ideas, to our knowledge the first examples of SF and GPI in continuous action spaces.
We compared with a previous approach [8] in a simple tabular case and an 8-DOF ant.

4Videos of the base and transfer policies can be viewed at https://tinyurl.com/y89g4dsd

4

https://tinyurl.com/y89g4dsd

References
[1] L. C. Baird. Reinforcement learning in continuous time: Advantage updating. In Neural

Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International
Conference on, volume 4, pages 2448–2453. IEEE, 1994.

[2] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt, and D. Silver.
Successor features for transfer in reinforcement learning. In Advances in neural information
processing systems, pages 4055–4065, 2017.

[3] A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver, M. Hessel, D. Mankowitz, A. Zidek, and
R. Munos. Transfer in deep reinforcement learning using successor features and generalised
policy improvement. In Proceedings of the International Conference on Machine Learning,
pages 501–510, 2018.

[4] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[5] P. Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural Computation, 5(4):613–624, 1993.

[6] R. Fox, A. Pakman, and N. Tishby. Taming the noise in reinforcement learning via soft updates.
arXiv preprint arXiv:1512.08562, 2015.

[7] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-based
policies. arXiv preprint arXiv:1702.08165, 2017.

[8] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine. Composable deep reinforce-
ment learning for robotic manipulation. arXiv preprint arXiv:1803.06773, 2018.

[9] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[10] M. E. Harmon, L. C. Baird III, and A. H. Klopf. Advantage updating applied to a differential
game. In Advances in neural information processing systems, pages 353–360, 1995.

[11] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakr-
ishnan, V. Vanhoucke, et al. Qt-opt: Scalable deep reinforcement learning for vision-based
robotic manipulation. arXiv preprint arXiv:1806.10293, 2018.

[12] H. J. Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of
statistical mechanics: theory and experiment, 2005(11):P11011, 2005.

[13] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[15] K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN
0262018020, 9780262018029.

[16] A. M. Saxe, A. C. Earle, and B. S. Rosman. Hierarchy through composition with multitask
lmdps. 2017.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[18] E. Todorov. Compositionality of optimal control laws. In Advances in Neural Information
Processing Systems, pages 1856–1864, 2009.

[19] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
5026–5033. IEEE, 2012.

5

[20] B. van Niekerk, S. James, A. Earle, and B. Rosman. Will it blend? composing value functions
in reinforcement learning. arXiv preprint arXiv:1807.04439, 2018.

[21] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas. Dueling network
architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581, 2015.

[22] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In AAAI, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

6

A Proofs

A.1 Max-Ent Generalized Policy Improvement

Theorem 3.1 (Max-Ent Generalized Policy Improvement) Let π1, π2, ..., πn be n policies with
α-max-ent action-value functions Q1, Q2, ..., Qn and value functions V 1, V 2, ..., V n. Define

π(a|s) ∝ exp
(
1
α maxiQ

i(s, a)
)
.

Then,

Qπ(s, a) ≥ max
i
Qi(s, a) for all s ∈ S and all a ∈ A, (7)

V π(s) ≥ max
i
V i(s) for all s ∈ S, (8)

where Qπ(s, a) is the α-max-ent action-value function of π, and V π(s) is the max-ent state-value
function of π.

For brevity we denote Qmax ≡ maxiQ
i. Define the soft Bellman operator associated with policy π

as

T πQ(s, a) ≡ r(s, a, s′) + γEp(s′|s,a)
[
αH[π(·|s′)] + Ea′∼π(·|s′) [Q(s′, a′)]

]
.

Haarnoja et al. [9] have pointed out that the soft Bellman operator T π corresponds to a conventional,
“hard” Bellman operator defined over the same MDP but with reward rπ(s, a, s′) = r(s, a, s′) +
γαEp(s′|s,a) [H[π(·|s′)]]. Thus, as long as r(s, a, s′) and H[π(·|s′)] are bounded, T π is a contraction
with Qπ as its fixed point. Applying T π to Qmax(s, a) we have:

T πQmax(s, a) = r(s, a, s′) + γEs′∼p(·|s,a),a′∼π(·|s′) [−α log π(a′|s′) +Qmax(s′, a′)]

= r(s, a, s′) + γEs′∼p(·|s,a),a′∼π(·|s′)
[
−α log

exp(α−1Qmax(s′, a′))

Zπ(s′)
+Qmax(s′, a′)

]
= r(s, a, s′) + γEs′∼p(·|s,a) [α logZπ(s′)] .

Similarly, if we apply T πi , the soft Bellman operator induced by policy πi, to Qmax(s, a), we obtain:

T πiQmax(s, a) = r(s, a, s′) + γEs′∼p(·|s,a),a′∼πi(·|s′) [−α log πi(a
′|s′) +Qmax(s′, a′)] .

We now note that the Kullback-Leibler divergence between πi and π can be written as

DKL(πi(·|s)‖π(·|s)) = Ea∼πi(·|s) [log πi(a|s)− log π(a|s)]

= Ea∼πi(·|s)
[
log πi(a|s)−

1

α
Qmax(s, a) + logZπ(s)

]
.

The quantity above, which is always nonnegative, will be useful in the subsequent derivations. Next
we write

T πQmax(s, a)− T πiQmax(s, a) = γEs′∼p(·|s,a)
[
α logZπ(s′)− Ea′∼πi(·|s′)[−α log πi(a

′|s′) +Qmax(s′, a′)]
]

= γEs′∼p(·|s,a)
[
Ea′∼πi(·|s′)[α logZπ(s′) + α log πi(a

′|s′)−Qmax(s′, a′)]
]

= γEs′∼p(·|s,a) [αDKL(πi(·|s′)‖π(·|s′))]
≥ 0. (9)

From (9) we have that

T πQmax(s, a) ≥ T πiQmax(s, a) ≥ T πiQi(s, a) = Qi(s, a) for all i.

Using the contraction and monotonicity of the soft Bellman operator T π we have

Qπ(s, a) = lim
k→∞

(T π)kQmax(s, a) ≥ Qi(s, a) for all i.

We have just showed (7). In order to show (8), we note that

V π(s) ≡ αH[π(·|s)] + Ea∼π [Qπ(s, a)]
≥ αH[π(·|s)] + Ea∼π [Qmax(s, a)]

= α logZπ(s). (10)

7

Similarly, we have, for all i,

V i(s) = Ea∼πi(·|s)
[
Qi(s, a)− α log πi(a|s)

]
≤ Ea∼πi(·|s) [Q

max(s, a)− α log πi(a|s)]
= α logZπ(s)− αDKL(πi(·|s)‖π(·|s))
≤ α logZπ(s). (11)

The bound (8) follows from (10) and (11).

B Algorithm details

Learning and sampling the Boltzmann policies defined by Q in continuous action spaces is challeng-
ing, particularly during transfer.

B.1 Motivation

Our algorithm is motivated by two observations: (i) batch computation in modern architectures makes
importance sampling with a relatively large number of samples efficient, (ii) the product distribution
for a mixture of normal distributions can be tractably sampled from. This motivates us to use adaptive
importance sampling with a mixture of (truncated) normal distributions for the proposal distribution.

We use neural networks to parametrise all quantities. For each policy we learn an action-value
QθQ(s, a), value VθV (s) and proposal distribution qθq (a|s), each of which is described by a neural
net with parameters θ.

We learn everything using off-policy temporal difference learning (TD(0)). The use of an off-policy
algorithm allows us to make the most of all experience, by storing all experience, generated across all
policies in a replay buffer R and improving all policies using this shared experience.

We implement this in a distributed RL framework with actors and a learner operating in parallel.
Algorithm 1 outlines the basic algorithm.

We use two common tricks for DeepRL to make our algorithm more stable: target networks and
parameterizing Q with an advantage function [1, 21, 10] which is more stable when the advantage is
small compared with the value.

Algorithm 1 Distributed single task adaptive importance sampled algorithm
Initialize proposal network θq , value network parameters θV and action-value network parameters
θQ and replay R
Copy to target nets θ′
while training do . in parallel on each actor

Obtain parameters θ from learner
Roll out episode
Add experience to replay R

end while
while training do . in parallel on the learner

Sample SARS tuple from R
Minimize L(θq)
Minimize L(θV)
Minimize L(θQ)
if target update period then

Update target network parameters θQ′ ← θQ, θq′ ← θq
end if

end while

B.2 Losses and Estimators

Here we enumerate all of the losses and their estimators.

8

We learn by sampling minibatches of SARS tuples from the replay buffer of size B. We index
over the batch dimension with l and use s′l to denote the state following sl, so the tuple consists of
(sl, al, rl, s

′
l). For importance sampled estimators we sample N actions for each state sl and use alk

to denote action sample k for state l.

B.2.1 Proposal loss

The proposal distribution is optimized by minimizing the forward KL divergence with the Boltzmann
policy π(a|s) ∝ exp 1

αQθQ(s, a). This KL is “zero avoiding” and will typically over-estimate the
support of π [15] which is desirable for a proposal distribution, particularly during transfer.

This leads to the following loss for θq

L(θq) = Eρβ
[
Ea∼π(·|s)[log π(a|st)− log qθq (a|st)]

]
(12)

where the expectation is over some off-policy state density ρβ generated by exploration policy β (in
our case, all experience in the replay buffer).

Since this objective is itself defined in terms of samples from π we use importance sampling to
obtain approximate samples. We use self-normalized importance weighting so that we do not need
to compute the partition function for π. An obvious choice for the proposal distribution would be
qθq (a|s), however, we found this to be unstable so we use a mixture distribution p(a|s) containing
equally weighted components consisting of the target proposal distribution qθ′q (a|s) for all policies
and the uniform distribution.

p(a|s) = 1

n+ 1

(
1

V A
+

n∑
i=1

qiθ′q (a|s)

)
(13)

where V A is the volume of the action space (which is always bounded in our case).

With this proposal this loss estimator is

L(θq) ≈ −
1

B

B∑
k=1

N∑
l=1

wkl log qθq (a|st), (14)

w′kl =
1
α (QθQ(sk, akl))

p(akl|sk)
; wkl =

wkl′∑N
m=1 w

′
km

. (15)

B.2.2 Value loss

The soft value loss is

L(θV) =Eρβ
[
1

2
(VθV (st)− α log

∫
A
exp(

1

α
QθQ(st, a))da)

2

]
(16)

We estimate this using importance sampling with the proposal distribution qθq (a|s)

L(θV) ≈
1

2B

B∑
l=1

(VθV (sl)− α logZ)
2 (17)

Z =

[
1

N

N∑
k=1

exp(1
αQθQ(sl, alk))

qθq (alk|sl)

]
(18)

This estimator introduces bias because we apply a concave function log to the estimate of Z. In
practice we found this estimator sufficient, provided the proposal distribution was close enough to π.
We also used importance sampling to estimate π while acting.

9

B.2.3 Action-value loss

The TD(0) loss for QθQ is

L(θQ) =Eρβ
[
1

2
(QθQ(st, at)− (r(st, at, st+1) + γVθ′V (st+1)))

2

]
(19)

this loss does not require sampling from π. For stability we use a target value function VθV ′ for
estimating the value of s′

L(θQ) ≈
1

2B

B∑
l=1

(QθQ(sl, al)− (rl + γVθ′V (s
′)))2. (20)

The action-value is parametrized as an advantage function QθQ(s, a) = Vθ′V (s) +AθA(s, a).

B.3 Importance Sampled Max-Ent GPI

We extended our importance sampled approach to estimate max-ent SF. This requires us to learn, for
each policy πi, the expected (max-ent) features ψi, in order to estimate the (entropic) value of each
policy under a new convex combination task w.

This requires that our experience tuple contain the full feature vector φ, rather than just the reward
for the policy which generated the experience ri. We learn the base policies for each reward ri as in
algorithm 1. Then ψθψ and ΥθΥ are learned in an analogous way to V and Q.

As with VθV , we use a target network for Υθ′Υ
and advantage parametrization. We found it is

necessary to have a longer target update period than for V .

B.3.1 State Dependent Successor Features loss

The state-dependent SF loss is

L(θΥ) =Eρβ
[
1

2
(ΥθΥ(st)− Eat∼π(at|st)[ψθψ (st, at) + α1(−QθQ(st, at) + α logZ(st))])

2

]
This loss is estimated using importance sampling with proposal qθq

L(θΥ) ≈ 1

2B

B∑
l=1

N∑
k=1

wlk

[
(ψiθψ (sl, alk)−Q

i
θQ(sl, alk) + α logZ(sl))

2
]
, (21)

wlk ∝
exp(1

αQ
i(sl, alk))

qiθq (alk|sl)
. (22)

We use the importance sampled estimate of Z from eq 18, rather than the value network which may
be lagging the true partition function. As with the value estimate, the log introduces a bias, but in
practise appears to work well.

B.3.2 State-Action Dependent Successor Features loss

The state-action dependent successor feature loss is

L(θψ) =Eρβ
[
1

2
(ψθQ(st, at)− (φ(st, at, st+1) + γΥθ′Υ

(st+1)))
2

]
. (23)

for which we use the following estimator

L(θψi) ≈
1

2B

B∑
l=1

(ψiθψ (sl, al)− (φl + γΥθ′Υ
(s′l)))

2. (24)

ψθψ is parametrized as a “psi-vantage” ψθψ (s, a) = Υθ′Υ
(s) +ψAθA(s, a).

10

C Experiment details

The ant task was simulated using the MuJoCo physics simulator [19]. The rewards were sparse as
described in the main text.

During training the ant started episodes at randomly sampled positions and orientations. For testing,
episodes began at the center position with randomly sampled starting orientations. All policies were
learned with a discounted infinite time horizon.

Transfer is made challenging by the need for good exploration. We aided exploration in several ways:
during training we acted according to a higher-temperature policy αe = 2α. We also sampled actions
uniformly in an ε-greedy fashion with ε = 0.1 and added Gaussian exploration noise during training.

Below we list the hyper-parameters used in the ant experiments.

Proposal learning rate 10−3

All other learning rates 10−4

Value target update period 200
Proposal target update period 200
Υ target update period 500
Number of importance samples for all estimators during learning 200
Number of importance samples for acting during training 50
Number of importance samples for acting during transfer 1000
α 0.05
γ 0.95
Number of units in each network layer 252

Table 1: Hyper-parameters

The network architecture used shared weights across all policies (but no weight sharing between
different networks, e.g. proposal, value, action-value and SF networks all had separate weights). The
state vector was preprocessed by a linear projection of 3× its dimension and then a tanh non-linearity.
The action-state networks (Q, ψ) consisted of 3 hidden layers with elu non-linearities [4], with both
action and the preprocessed state projected by linear layers to be of the same dimensionality and
concatenated as input to the network. All value networks and proposal networks consisted of 2 layers
with elu non-linearities.

11

	Introduction
	Background
	Multi-task RL
	Successor Features
	Maximum Entropy RL
	Optimistic Policy Composition

	Max-Ent Policy Composition with GPI
	Max-Ent Successor Features
	Max-Ent Generalized Policy Improvement

	Implementation and Experiments
	Conclusion
	Proofs
	Max-Ent Generalized Policy Improvement

	Algorithm details
	Motivation
	Losses and Estimators
	Proposal loss
	Value loss
	Action-value loss

	Importance Sampled Max-Ent GPI
	State Dependent Successor Features loss
	State-Action Dependent Successor Features loss

	Experiment details

