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Abstract
Composing previously mastered skills to solve
novel tasks promises dramatic improvements in
the data efficiency of reinforcement learning.
Here, we analyze two recent works composing
behaviors represented in the form of action-value
functions and show that they perform poorly in
some situations. As part of this analysis, we ex-
tend an important generalization of policy im-
provement to the maximum entropy framework
and introduce an algorithm for the practical im-
plementation of successor features in continuous
action spaces. Then we propose a novel approach
which addresses the failure cases of prior work
and, in principle, recovers the optimal policy dur-
ing transfer. This method works by explicitly
learning the (discounted, future) divergence be-
tween base policies. We study this approach in the
tabular case and on non-trivial continuous control
problems with compositional structure and show
that it outperforms or matches existing methods
across all tasks considered.

1. Introduction
Reinforcement learning (RL) algorithms coupled with pow-
erful function approximators have recently achieved a series
of successes (Mnih et al., 2015; Silver et al., 2016; Lillicrap
et al., 2015; Kalashnikov et al., 2018). Unfortunately, all
of these approaches still require a large number of inter-
actions with the environment. One reason for this is that
the algorithms are typically applied “from scratch,” rather
than leveraging experience from prior tasks. This reduces
their applicability in domains where generating experience
is expensive, or learning from scratch is challenging.

In humans, the development of complex motor skills, such
as bipedal locomotion or high-speed manipulation, also
requires large amounts of experience and practice (Adolph
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et al., 2012; Haith & Krakauer, 2013) However, once such
skills have been acquired humans rapidly put them to work
in new contexts and to solve new tasks, suggesting transfer
learning as an important mechanism for data efficiency.

Motivated by this observation, we are interested in RL meth-
ods for transfer that are suitable for high-dimensional motor
control. We focus on model-free approaches which are evi-
dent in human motor control (Haith & Krakauer, 2013) and
underlie the recent successes of Deep RL cited above.

Transfer may be especially valuable in domains where a
small set of skills can be composed, in different combina-
tions, to solve a variety of tasks. Different notions of com-
positionality have been considered in the RL and robotics
literature. For instance, ‘options’ tend to be associated with
discrete units of behavior that can be sequenced, thus em-
phasizing composition in time (Precup et al., 1998). In
this paper we are concerned with a rather distinct notion
of compositionality, namely how to combine and blend po-
tentially concurrent behaviors. This form of composition is
particularly relevant in high-dimensional continuous action
spaces, where it is possible to achieve more than one task
simultaneously (e.g. walking somewhere while juggling).

One approach to this challenge is via the composition of
task rewards. Specifically, we are interested in the following
question: If we have previously solved a set of tasks with
similar transition dynamics but different reward functions,
how can we leverage this knowledge to solve new tasks
which can be expressed as a convex combination of those
reward functions?

This question has recently been studied in two independent
lines of work: by Barreto et al. (2017; 2018) in the context of
successor feature (SF) representations used for Generalized
Policy Improvement (GPI) with deterministic policies, and
by Haarnoja et al. (2018a); van Niekerk et al. (2018) in
the context of maximum entropy (max-ent) policies. These
approaches operate in distinct frameworks but both achieve
skill composition by combining the Q-functions associated
with previously learned skills.

In this paper, we clarify the relationship between the two ap-
proaches and show that both perform well in some situations
but that they fail in complementary ways. We introduce a
novel method of behavior composition that can consistently
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achieve good performance.

Our contributions are as follows:

1. We introduce succcessor features (SF) in the context of
the maximum entropy framework and extend the GPI
theorem to the max-ent objective (max-ent GPI).

2. We provide an analysis of when GPI, and composi-
tional “optimism” (CO) (Haarnoja et al., 2018a) per-
form poorly. We highlight these failure cases with
tabular discrete action tasks and challenging continu-
ous control tasks.

3. We propose a correction term – which we call Diver-
gence Correction (DC)– based on the Rényi divergence
between policies which allows us, in principle, to re-
cover the optimal policy for transfer for any convex
combination of rewards.

4. We demonstrate a practical algorithm, which relies of
adaptive importance sampling, for zero-shot transfer
with DC or max-ent GPI in continuous action spaces.
We compare the approaches introduced here, max-ent
GPI and DC, with compositional optimism (Haarnoja
et al., 2018a) and Conditional Q functions (Schaul
et al., 2015) in a variety of non-trivial continuous action
transfer tasks.

2. Background
2.1. Multi-task RL

We consider Markov Decision Processes defined by the
tupleM containing: a state space S, action space A, start
state distribution p(s1), transition function p(st+1|st, at),
discount γ ∈ [0, 1) and reward function r(st, at, st+1). We
aim to find an optimal policy π(a|s) : S → P(A), which
is one that maximises the discounted expected return from
any state J(π) = Eπ,M [

∑∞
τ=t γ

τ−trτ ] where the expected
return is dependent on the policy π and the MDPM.

We formalize transfer as in Barreto et al. (2017); Haarnoja
et al. (2018a), as the desire to perform well across all tasks
in a setM∈ T ′ (without direct experience on these tasks)
after having learned policies for tasksM∈ T . We assume
that T and T ′ are related in two ways: all tasks share the
same state transition function, and tasks in T ′ can be ex-
pressed as convex combinations of rewards associated with
tasks in set T . We write the reward functions for tasks in
T as the vector φ = (r1, r2, . . . ), so tasks in T ′ can be
expressed as rw = φ ·w. Our theoretical results assume
that we have learned optimal policies for all tasks in T .

For clarity, we focus on the combination of only two policies,
that is w has only 2 non-zero entries and so we can write
rb = bri + (1 − b)rj (b ∈ [0, 1]). As we discuss later,

the approaches we consider can be extended to more than
two tasks. We refer to a transfer method as optimal, if
it results in an optimal policy for the transfer task in T ′,
using only experience on tasks T . As in most prior work in
Deep RL, theoretical guarantees of optimality can only be
approximately achieved in practise.

2.2. Successor Features

Successor Features (SF) (Dayan, 1993) and Generalised Pol-
icy Improvement (GPI) (Barreto et al., 2017; 2018) provide
a principled solution to transfer in the setting defined above.
SF make the additional assumption that the reward feature
φ is fully observable, that is, the agent always has access to
the rewards of all tasks in T but not T ′ during training.

The key insight of SF is that linearity of the reward rw with
respect to the features φ implies the following decomposi-
tion of the action value of policy π on task rw:

Qπw(st, at) = Eπ

[ ∞∑
τ=t

γτ−tφτ ·w|at

]

= Eπ

[ ∞∑
i=t

γτ−tφτ |at

]
·w ≡ ψπ(st, at) ·w

where ψπ is the expected discounted sum of features φ
induced by policy π. The SF decomposition allows us to
compute the value of an existing policy π on a new task rw.

GPI provides a principled way to use this value information
to compose n existing polices π1, π2, ..., πn indexed by i to
solve task rw. Namely, we act according to the deterministic
GPI policy πGPIw (st) ≡ argmaxat Q

GPI
w (st, at) where

QGPIw (st, at) ≡ maxiQ
πi
w (st, at) = maxiψ

πi(s, a) ·w

The GPI theorem guarantees the GPI policy has a return at
least as good as any component policy, that is, V π

GPI

w (s) ≥
maxi V

πi
w (s) ∀s ∈ S.

Note that SF and GPI are separate concepts, the GPI theorem
does not require the use of SFs. SFs provide an efficient
mechanism for computing the value of existing policies on
a new task, and GPI provides a principled way to make use
of this information to compose the existing policies.

2.3. Maximum Entropy RL

The maximum entropy (max-ent) RL objective augments
the reward to favor entropic solutions

J(π) = Eπ,M [
∑∞
τ=t γ

τ−t(rτ + αH[π(·|sτ ))]] (1)

where α is a parameter that determines the relative impor-
tance of the entropy term.

This objective has been considered in a number of works
including (Kappen, 2005; Todorov, 2009; Haarnoja et al.,
2017; 2018a; Ziebart et al., 2008; Fox et al., 2016).
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We define the action-value Qπ associated with eq. 1 as

Qπ(st, at) ≡ rt + Eπ
[∑∞

τ=t+1 γ
τ−t(rτ + αH[π(·|sτ )])

]
(2)

(notice Qπ(st, at) does not include the entropy term for
the state st). Soft Q iteration where the policy π(at|st) ∝
exp( 1

αQ(st, at)) is implicitly defined byQ converges to the
optimal policy with standard assumptions (Haarnoja et al.,
2017).

Q(st, at)← r(st, at, st+1) + γEp(st+1|st,at) [V (st+1)]

V (st)← Eπ [Q(st, at)] + αH[π(·|st)]

= α log

∫
A
exp(

1

α
Q(st, at))da ≡ α logZ(st)

2.4. Compositional Optimisim (CO)

Haarnoja et al. (2018a) introduced a simple approach to
policy composition in the max-ent framework by approxi-
mating the optimal action-value for the transfer task rb =
bri + (1− b)rj from the optimal action-values of the com-
ponent tasks Qi and Qj

QCOb (s, a) ≡ bQi(s, a) + (1− b)Qj(s, a). (3)

When using Boltzmann policies defined by Q, the result-
ing policy, πCOb (a|s) ∝ exp( 1

αQ
CO
b (s, a)), is the product

distribution of the two component policies. We refer to
πCOb as the compositionally “optimistic” (CO) policy, as
it acts according to an over-estimate of the action value
(QCOb (s, a) ≥ Q∗b(s, a)) by assuming the optimal returns
of Qi and Qj will be, simultaneously, achievable.

3. Composing Policies in Max-Ent
Reinforcement Learning

In this section we present two novel approaches for transfer
in the max-ent framework. In section 4 we then outline a
practical algorithm using these results.

3.1. Max-Ent Successor Features and Generalized
Policy Improvement

We introduce max-ent SF, which provide a mechanism for
computing the value of a maximum entropy policy under
any convex combination of rewards. We then show that
the GPI theorem (Barreto et al., 2017) holds for maximum
entropy policies.

We define the action-dependent SF to include the entropy
of the policy, excluding the current state, analogous to the
max-entropy definition of Qπ in (2):

ψπ(st, at) ≡ φt + Eπ

[ ∞∑
τ=i+1

γτ−t(φτ + α1 ·H[π(·|s)])

]
= φt + γEp(st+1|st,at) [Υ(st+1)]

where 1 is a vector of ones of the same dimensionality as φ
and we define the state-dependent successor features as the
expected ψπ in analogy with V π(s):

Υπ(s) ≡ Ea∼π(·|s) [ψπ(s, a)] + α1 ·H[π(·|s)]. (4)

The max-entropy action-value of π for any convex combina-
tion of rewards w is then given byQπw(s, a) = ψπ(s, a) ·w.
Max-ent SF allow us to estimate the action-value of previous
policies on a new task. We show that, as in the deterministic
case, there is a principled way to combine multiple policies
using their action-values on task w.

Theorem 3.1 (Max-Ent Generalized Policy Improvement)
Let π1, π2, ..., πn be n policies with α-max-ent action-
value functions Q1, Q2, ..., Qn and value functions
V 1, V 2, ..., V n. Define

π(a|s) ∝ exp
(
1
α maxiQ

i(s, a)
)
.

Then,

Qπ(s, a) ≥ max
i
Qi(s, a) for all s ∈ S, a ∈ A, (5)

V π(s) ≥ max
i
V i(s) for all s ∈ S, (6)

where Qπ(s, a) and V π(s) are the α-max-ent action-value
and value function respectively of π.

Proof: See appendix A.1.

In our setup, we learn ψπi(s, a), the SFs of policies πi
for each task in T , we define the max-ent GPI policy for
task w ∈ T ′ as πGPIw (a|s) ∝ exp( 1

α maxiQ
πi
w (s, a)) =

exp( 1
α maxiψ

πi(s, a) ·w). In contrast to CO, GPI can be
seen as acting “pessimistically” as it always acts according
to a lower bound (equation 5) on the action-value.

3.2. Divergence Correction (DC)

Both max-ent GPI we presented above, and CO can, in
different ways, fail to transfer well in some situations (fig.
1). Neither approach consistently acts optimally during
transfer, even if all component terms are known exactly.

Here we show, at the cost of learning a function conditional
on the task weightings b, it is in principle possible to recover
the optimal max-ent policy for the transfer tasks, without
direct experience on those tasks, by correcting for the com-
positional optimism bias in QCOb .

The correction term for CO uses a property noted, but not
exploited in Haarnoja et al. (2018a). The bias in QCO is
related to the the discounted sum of Rényi divergences of
the two component policies. Intuitively, if the two policies
induce trajectories with low divergence between the poli-
cies in each state, the CO assumption that both policies can
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achieve good returns simultaneously is approximately cor-
rect. When the divergences are large (i.e. the two policies
do not agree on what action to take), the CO assumption is
being overly optimistic.

Theorem 3.2 (DC Optimality) Let πi, πj be α max-ent
optimal policies for tasks with rewards ri and rj with max-
ent action-value functions Qi, Qj . Define C∞b (st, at) as
the fixed point of

C
(k+1)
b (st, at) = −αγEp(st+1|st,at)

[
log

∫
A
πi(at+1|st+1)

bπj(at+1|st+1)
(1−b) exp

(
− 1

α
C

(k)
b (st+1, at+1)

)
dat+1

]
Given the conditions for Soft Q convergence, the max-ent
optimal Q∗b(s, a) for rb = bri + (1− b)rj is

Q∗b(s, a) = bQi(s, a) + (1− b)Qj(s, a)− C∞b (s, a)

∀s ∈ S, a ∈ A, b ∈ [0, 1]

Proof: See appendix A.2.

We call this Divergence Correction (DC) as the quantity
C∞b is related to the Rényi divergence between policies (see
appendix A.2 for details). LearningC∞b does not require any
additional information (in principle) than that required to
learn policies πi and πj . Unlike with SF, it is not necessary
to observe other task rewards while training the policies. On
the other hand, SF/GPI can be used to combine any number
of tasks with arbitrary weight vectors w, the difficulty of
estimatingC∞ increases significantly if more than two tasks
are combined (see supplementary theorem A1).

Supplementary Table 1 provides a comparison on the proper-
ties of the methods we consider here. We also compare with
simply learning a conditional Q function Q(s, a|b) (CondQ)
(e.g. Schaul et al., 2015; Andrychowicz et al., 2017). As
with GPI, this requires observing the full set of task features
φ, in order to compute rb for arbitrary b.

We have introduced two new approaches to max-ent transfer
composition and described their properties: max-ent SF/GPI
and DC. Now we address the question of how to practically
learn and sample with these approaches in continuous action
spaces.

4. Adaptive Importance Sampling for
Boltzman Policies Algorithm

Robotic systems with high-dimensional continuous action
spaces are promising use cases for the ideas presented above,
particularly as data efficiency is often a paramount concern.
Such control problems may allow for multiple solutions,
and often contain exploitable compositional structure.

Unfortunately, learning and sampling of general Boltzmann
policies defined over continuous action spaces is challeng-
ing. One approach is to fit an expressible, tractable sam-
pler, such as a stochastic neural network to approximate
πi (e.g. Haarnoja et al., 2018a). This approach works well
when learning a single policy. However, during transfer this
may require learning a new sampler for each new transfer
task. Here we want to zero-shot transfer by sampling from
a newly synthesized action-value function online, which
precludes fitting a sampler. To address this issue we intro-
duce Adaptive Importance Sampling for Boltzmann Policies
(AISBP), which provides a practical solution to this chal-
lenge.

We use parametric approximators (e.g. neural networks) and
denote their parameters θ, including the soft action-value
for reward i: QiθQ(s, a); the associated soft value function
V iθV (s) and a proposal distribution qiθq (a|s), which is used
for importance sampling the policy (we will sometimes drop
the task index i for notational simplicity, and write the losses
for a single policy).

We use an off-policy algorithm, so that experience generated
by training on policy πi can be used to improve policy
πj . This is important to ensure that QjθQ(s, a) is a good
approximation of the action-value function in states that are
likely under πj but unlikely under πi (suppl. F discusses
issues of exploration and coverage of the state space under
function approximation). Training experience across all
tasks is stored in a replay buffer R, and mini-batches of
experience are sampled uniformly from the replay.

The proposal distribution is a mixture of M truncated Nor-
mal distributions NT , truncated to the square a ∈ [−1, 1)n
with diagonal covariances.

qθq (a|s) = 1
M

∑M
m=1NT (a;µmθq (s), σ

m
θq
(s),−1, 1) (7)

The proposal distribution is optimized by minimizing the
forward KL divergence with the Boltzmann policy π(a|s) ∝
exp 1

αQθQ(s, a). This KL is “zero avoiding” and over-
estimates the support of π (Murphy, 2012) which is de-
sirable for a proposal distribution (Gu et al., 2015). The
proposal loss is

L(θq) = ER
[
Ea∼π(·|s)[log π(a|st)− log qθq (a|st)]

]
(8)

where the expectation is over the replay buffer state density.

The inner expectation in the proposal loss itself requires
sampling from π. We approximate this expectation by self-
normalized importance sampling and use a target proposal
distribution p(at|st) which is a mixture distribution consist-
ing of the proposals for all policies along with a uniform
distribution. For batchsizeB andN proposal action samples
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the estimator of the proposal loss is then

L(θq) ≈ −
1

B

B∑
k=1

N∑
l=1

wkl log qθq (akl|sk)

w′kl =
exp 1

α (QθQ(sk, akl))

p(akl|sk)
; wkl =

w′kl∑N
m=1 w

′
km

By restricting the proposal distribution to mixtures of (trun-
cated) Gaussians, we ensure the product of the proposal
distributions is tractable. We make use of this product pro-
posal during transfer (see supplementary C.3).

The policy is improved using Soft Q iteration (eq. 2). The
value function loss is defined as the L2 error on the Soft Q
estimate of value

L(θV ) = ER
[
1
2

(
VθV (st)−

α log

∫
A
exp(

1

α
QθQ(st, a))da

)2] (9)

which is estimated using importance sampling to compute
the integral.

L(θV ) ≈ 1
2B

∑B
l=1 (VθV (sl)− α logZ)

2

Z =

[
1

N

N∑
k=1

exp( 1
αQθQ(sl, alk))

qθq (alk|sl)

]
(10)

This introduces bias due to the finite-sample approximation
of the expectation inside the (concave) log. In practice
we found this estimator sufficiently accurate, provided the
proposal distribution was close to π. We also use importance
sampling to sample from π while acting.

The action-value loss is the L2 norm with the Soft Q target:

L(θQ) = ER
[
1
2 (QθQ(st, at)−

(r(st, at, st+1) + γVθ′V (st+1)))
2
]

(11)

To improve stability we employ target networks for the value
VθV ′ and proposal qθ′q networks (Mnih et al., 2015; Lilli-
crap et al., 2015) We also parameterize Q as an advantage
QθQ(s, a) = VθV (s)+AθA(s, a) (Baird, 1994; Wang et al.,
2015; Harmon et al., 1995) which is more stable when the
advantage is small compared with the value. The full algo-
rithm is given in Algorithm 1 and more details are provided
in appendix C.

4.1. Importance Sampled Max-Ent GPI

The same importance sampling approach can also be used to
estimate max-ent SFs. Max-ent GPI requires us to learn the
expected (maximum entropy) featuresψi for each policy πi,

Algorithm 1 AISBP training algorithm
Initialize proposal network parameters θq
Initial value network parameters θV
Initialize action-value network parameters θQ
Initialize replay R
while training do . in parallel on each actor

Obtain parameters θ from learner
Sample task i ∼ T
Importance sample πi(a|s) ∝ exp 1

αQ
i
θQ

(s, a)

Using proposal qiθq
Add experience to replay R

end while
while training do . in parallel on the learner

Sample SARS tuple from R
Improve L(θq), L(θV ), L(θQ)
Improve additional losses for transfer
L(θΥ), L(θψ), L(θC), L(θVb

) L(θQb
),

if target update period then
Update target network parameters
θV ′ ← θV , θq′ ← θq , θΥ′ ← θΥ, θV ′

b
← θVb

end if
end while

in order to estimate its (entropic) value under a new convex
combination task w. This requires that the experience tuples
in the replay contain the full feature vector φ, rather than
just the reward for the policy which generated the experience
ri. Given this information ψθψ and ΥθΥ can be learned
with analogous updates to V and Q.

As with VθV , we use a target network for Υθ′Υ
and advan-

tage parametrization. We found it more stable to using a
larger target update period than for V . Full details are of the
losses and samplers are in appendix C.

4.2. Divergence Correction

Transfer using compositional optimism (equation 3,
Haarnoja et al. (2018a)) only requires the max-ent action
values of each task, so no additional training is required
beyond the base policies. In section 3.2 we have shown that
if we can learn the fixed point of C∞b (s, a) we can correct
this compositional optimism bias and recover the optimal
action-value Q∗b(s, a) for the transfer task rb.

We exploit the recursive relationship in C∞b (s, a) to fit a
neural netCθC (s, a, b) with a TD(0) estimator. This requires
learning a conditional estimator for any value of b, so as to
support arbitrary task combinations. Fortunately, the same
experience can be used to learn an estimator for all values
of b, by sampling b during each TD update. We learn an
estimator CθC (s, a, b) for each pair of policies πi, πj with
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(a) L task (b) T task 1 (c) T task 2 (d)

(e) LR CO (f) LU GPI (g) T GPI (h) T DC (i)

Figure 1. Policy composition in the tabular case. All tasks are in an infinite-horizon tabular 8x8 world. The action space is the 4
diagonal movements (actions at the boundary transition back to the same state) (a-c) shows the reward functions for the L(eft) task and the
two T(ricky) tasks (color indicates reward, dark blue r = +1, light blue r = 0.75). The arrows indicate the action likelihoods for the
max-ent optimal policy for each task. (d) The log regret on the compositional task rb = 1/2ri + 1/2rj using the different methods for
transfer. This is shown for three, qualitatively distinct compositional tasks: left-right (LR), left-up (LU) and the “tricky“ tasks (T). GPI
performs well on LR, where the subtasks are incompatible, meaning the optimal policy on the transfer task is similar to one of the existing
policies. In LR CO fails to commit to a particular direction (e shows the CO policy and value) and performs poorly. Conversely, on the
LU task when the base policies are compatible, CO transfers well while the GPI policy (f) does not consistently take advantage of the
compatibility of the two tasks to simultaneously achieve both base rewards (unlike the CO policy suppl. figure 5c). Neither GPI nor CO
policies (g shows the GPI policy, but CO is similar) perform well when the optimal transfer policy is unlike either existing task policy.
The two tricky task policies are compatible in many states but have a high-divergence in the bottom-left corner since the rewards are
non-overlapping there (i shows the divergence in each state of the two tricky base policies), thus the optimal policy on the compositional
transfer task is to move to the top right corner where there are overlapping rewards. By learning, and correcting for, this future divergence
between policies, DC results in optimal policies for all task combinations including tricky (h). Additional details in suppl. figure 5.

the loss

L(θC) =Es∼R,b∼U(0,1)[
1

2
(CθC (s, a, b)+

αγEp(s′|s,a)[log
∫
A
exp(b log πi(a

′|s′)+

(1− b)πj(a′|s′)−
1

α
CθC′ (s

′, a′, b))da′])2]

(12)

As with other integrals of the action space, we approxi-
mate this loss using importance sampling to estimate the
integral. As before, we use target networks and an advan-
tage parametrization for CθC (s, a, b) Note that, unlike GPI
and CondQ (next section), learning C∞b does not require
observing φ while training.

We also considered a heuristic approach where we learned
C only for b = 1

2 (this is typically approximately the largest
divergence). This avoids the complexity of a conditional
estimator and then we we estimate C∞b during transfer as
Ĉ∞b (s, a) ∼ 4b(1 − b)C∞1/2(s, a). This heuristic, we de-
note DC-Cheap, can be motivated by considering Gaus-
sian policies (see appendix D) The max-ent GPI bound

can be used to correct for over-estimates of the heuris-
tic C∞b , QDC−Cheap+GPI(s, a) = max(QCO(s, a) −
Ĉ∞b (s, a), QGPI(s, a)).

4.3. Cond Q

As a baseline, we learn a conditional Q function using a
similar approach to DC of sampling b each update Q(s, a, b)
(Schaul et al., 2015). This, like GPI but unlike DC, requires
observing φ during training so the reward on task b can be
estimated. Full details provided in appendix C.

4.4. Sampling Compositional Policies

During transfer we need to sample from the Boltzmann pol-
icy defined by our estimate of the transfer action-value Qb
(the estimate is computed using the methods we enumer-
ated above). We wish to avoid needing to, offline, learn a
new proposal or sampling distribution first (which is the
approach employed by Haarnoja et al. (2018a)).

As outlined earlier (and detailed in appendix C.3), we chose
the proposal distributions so that the product of propos-
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Figure 2. Tricky point mass. The continuous “tricky” task with
a 2-D velocity controlled pointed mass. (a) Environment and ex-
ample trajectories. The rewards are (r1 = 1, r2 = 0), (0, 1) and
(0.75, 0.75) for the green, red and yellow squares respectively.
Lines show sampled trajectories (starting in the center) for the
compositional task r1/2 with different transfer methods. Only
DC and CondQ (not shown) navigate to the yellow reward area
during transfer, which is the optimal reward. (b) Box plot of re-
turns for each transfer method (5 seeds). DC and CondQ methods
perform significantly better than GPI, and the CO policy performs
poorly. (c) QCO at the center position for the transfer task. As
both base policies prefer moving left and down, most of the energy
(brighter color) is on these actions. However, the future divergence
C∞

1/2 under these actions is high, which results in the QDC dif-
fering qualitatively from CO and favoring the upward trajectory.
Additional details in supplementary figure 6.

als is tractable, meaning we can sample from qijb (a|s) ∝
(qiθq (a|s))

b(qjθ(a|s))(1−b). This is a good proposal distribu-
tion when the CO bias is low, since QCOb defines a Boltz-
mann policy which is the product of the base policies1.
However, when C∞b (s, a) is large, meaning the CO bias
is large, qij may not be a good proposal, as we show in
the experiments. In this case none of the existing proposal
distributions may be a good fit. Therefore we sample from
a mixture distribution of all policies, all policy products
and the uniform distribution, with the hope that at least one
component of this mixture will be sampling from high-value
parts of the action space.

pb(a|s) ≡ 1
4 (q

i
θq
(a|s) + qjθq (a|s) + qijb (a|s) +

1
VA ) (13)

where VA is the volume of the action space. Empirically, we
find this is sufficient to result in good performance during

1πCOb (a|s) ∝ exp 1
α
QCO(s, a) = exp( 1

α
(Q1(s, a) +

Q2(s, a)) = π1(a|s)π2(a|s).
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GPI

CondQ
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DC
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Figure 3. “Tricky” task with planar manipulator. (a) The
“tricky” tasks with a 5D torque-controlled planar manipulator.
The training tasks consists of (mutually exclusive) rewards of
(1, 0), (0, 1) when the finger is at the green and red targets re-
spectively and reward (0.75, 0.75) at the blue target. (b) Finger
position at the end of the trajectories starting from randomly sam-
pled start states) for the transfer task with circles indicating the
positions of the targets. DC and CondQ trajectories reach towards
the blue target (the optimal solution) while CO and GPI trajectories
primarily reach towards one of the suboptimal partial solutions.
(c) Box plot of returns on the transfer tasks, DC outperforms other
methods. Additional details in supplementary figure 7.

transfer. The transfer algorithm is given in supplementary
algorithm 2.

5. Experiments
5.1. Discrete, tabular environment

We first provide some illustrative tabular cases of compo-
sitional transfer. These highlight situations in which GPI
and CO transfer can perform poorly (Figure 1). As expected
from theory, we find that GPI performs well when the opti-
mal transfer policy is close to one of the existing policies;
CO performs well when both subtask policies are compati-
ble, meaning there is some part of the action space that has
a high likelihood under both policies. The task we refer
to as “tricky” is illustrative of challenging tasks we will
focus on in the next section, namely scenarios in which the
optimal policy for the transfer task does not resemble either
existing policy: In the grid world non-overlapping rewards
for each task are provided in one corner of the grid world,
while lower value overlapping rewards are provided in the
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Figure 4. “Tricky” task with mobile bodies. “Tricky” task with
two bodies: a 3 DOF jumping ball (supplementary figure 8a)
and (a) 8 DOF ant (both torque controlled). The task has re-
wards (1, 0), (0, 1) in the green and red boxes respectively and
(0.75, 0.75) in the blue square. (b) Sampled trajectories of the ant
on the transfer task (b = 1

2
) starting from a neutral position. GPI

and DC almost always go to the blue square (optimal), CondQ
and CO do not. Box plot of returns for the jumping ball (c) and
ant (d) when started in the center position. CO does not recover
a good transfer policy for the compositional task while the other
approaches largely succeed, although CondQ does not learn a good
policy on the ant. Additional details in supplementary figure 8.

other corner (cf. Fig. 1). As a consequence both GPI and
CO perform poorly while DC performs well in all cases.

5.2. Continuous action spaces

In the tabular environments we demonstrated some challeng-
ing “tricky” transfer tasks that previous methods perform
poorly on. Here, we test our approach on continuous con-
trol tasks with the same challenging properties. We train
max-ent policies to solve individual tasks and then compare
transfer performance using the different approaches. All
approaches use the same experience, proposal distributions
and base policies.

Figure 2 examines the transfer policies in detail in a simple
point-mass version of the “tricky” tasks and shows how the
estimated C∞b corrects QCO and results in a qualitatively
better transfer policy.

We now examine conceptually similar tasks in more difficult
domains: a 5 DOF planar manipulator reaching task (figure
3), 3 DOF jumping ball and 8 DOF ant (figure 4). We see
that DC recovers a qualitatively better policy in all cases.
The performance of GPI depends noticeably on the choice

of α. DC-Cheap, which is a simpler heuristic, performs
almost as well as DC in the tasks we consider except for the
point mass task. When bounded by GPI (DC-Cheap+GPI)
it performs well for the point mass task as well, suggesting
these heuristics may be sufficient in some cases2.

We focused on “tricky” tasks as they are a particularly chal-
lenging form of transfer. There are two other cases we
considered in the tabular analysis. One: when the base
tasks are compatible, CO performs well. We expect that
DC would also perform well in this situation since, in this
case, the correction term C∞b that DC must learn is incon-
sequential (CO is equivalent to assuming C∞b = 0). Two:
At the other extreme, supplementary figure 9 demonstrates
on a task with incompatible base tasks (i.e. C∞b is large and
potentially challenging to learn), DC continues to perform
as well as GPI, slightly better than CondQ and much bet-
ter than CO. In principle, without function approximator
error, DC always recovers the optimal policy during transfer.
These experiments provide empirical evidence that our ap-
proximate algorithm performs well in a range of situations.

6. Discussion
We have presented two approaches to transfer learning via
convex combinations of rewards in the maximum entropy
framework: max-ent GPI and DC. We have shown that, un-
der standard assumptions, the max-ent GPI policy performs
at least as well as its component policies, and that DC re-
covers the optimal transfer policy. Todorov (2009) and (Pan
et al., 2015; Saxe et al., 2017; van Niekerk et al., 2018) pre-
viously considered optimal composition of max-ent policies.
However, these approaches require stronger assumptions
about the class of MDPs. By contrast, DC does not restrict
the class of MDPs and learns how compatible policies are,
allowing approximate recovery of optimal transfer policies
both when the component rewards are jointly achievable
(AND), and when only one sub-goal can be achieved (OR).

We have compared our methods with conditional action-
value functions (CondQ) (Schaul et al., 2015, e.g.) and opti-
mistic policy combination (Haarnoja et al., 2018a). Further,
we have presented AISBP, a practical algorithm for training
DC and max-ent GPI models in continuous action spaces us-
ing adaptive importance sampling. We have compared these
approaches, along with heuristic approximations of DC, and
demonstrated that DC recovers an approximately optimal
policy during transfer across a variety of high-dimensional
control tasks. Empirically we have found CondQ may be
harder to learn than DC, and it requires additional observa-
tion of φ during training.

2 Videos of the tasks and supplementary information at https:
//tinyurl.com/yaplfwaq.

https://tinyurl.com/yaplfwaq
https://tinyurl.com/yaplfwaq
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A. Proofs
A.1. Max-Ent Generalized Policy Improvement

Theorem 3.1 (Max-Ent Generalized Policy Improvement) Let π1, π2, ..., πn be n policies with α-max-ent action-value
functions Q1, Q2, ..., Qn and value functions V 1, V 2, ..., V n. Define

π(a|s) ∝ exp
(
1
α maxiQ

i(s, a)
)
.

Then,

Qπ(s, a) ≥ max
i
Qi(s, a) for all s ∈ S, a ∈ A, (5)

V π(s) ≥ max
i
V i(s) for all s ∈ S, (6)

where Qπ(s, a) and V π(s) are the α-max-ent action-value and value function respectively of π.

For brevity we denote Qmax ≡ maxiQ
i. Define the soft Bellman operator associated with policy π as

T πQ(s, a) ≡ r(s, a, s′) + γEp(s′|s,a)
[
αH[π(·|s′)] + Ea′∼π(·|s′) [Q(s′, a′)]

]
.

Haarnoja et al. (2018b) have pointed out that the soft Bellman operator T π corresponds to a conventional, “hard”, Bellman
operator defined over the same MDP but with reward rπ(s, a, s′) = r(s, a, s′) + γαEp(s′|s,a) [H[π(·|s′)]]. Thus, as long as
r(s, a, s′) and H[π(·|s′)] are bounded, T π is a contraction with Qπ as its fixed point. Applying T π to Qmax(s, a) we have:

T πQmax(s, a) = r(s, a, s′) + γEs′∼p(·|s,a),a′∼π(·|s′) [−α log π(a′|s′) +Qmax(s′, a′)]

= r(s, a, s′) + γEs′∼p(·|s,a),a′∼π(·|s′)
[
−α log

exp(α−1Qmax(s′, a′))

Zπ(s′)
+Qmax(s′, a′)

]
= r(s, a, s′) + γEs′∼p(·|s,a) [α logZπ(s′)] .

Similarly, if we apply T πi , the soft Bellman operator induced by policy πi, to Qmax(s, a), we obtain:

T πiQmax(s, a) = r(s, a, s′) + γEs′∼p(·|s,a),a′∼πi(·|s′) [−α log πi(a
′|s′) +Qmax(s′, a′)] .

We now note that the Kullback-Leibler divergence between πi and π can be written as

DKL(πi(·|s)‖π(·|s)) = Ea∼πi(·|s) [log πi(a|s)− log π(a|s)]

= Ea∼πi(·|s)

[
log πi(a|s)−

1

α
Qmax(s, a) + logZπ(s)

]
.

The quantity above, which is always nonnegative, will be useful in the subsequent derivations. Next we write

T πQmax(s, a)− T πiQmax(s, a) = γEs′∼p(·|s,a)
[
α logZπ(s′)− Ea′∼πi(·|s′)[−α log πi(a

′|s′) +Qmax(s′, a′)]
]

= γEs′∼p(·|s,a)
[
Ea′∼πi(·|s′)[α logZπ(s′) + α log πi(a

′|s′)−Qmax(s′, a′)]
]

= γEs′∼p(·|s,a) [αDKL(πi(·|s′)‖π(·|s′))]
≥ 0. (14)

From (14) we have that

T πQmax(s, a) ≥ T πiQmax(s, a) ≥ T πiQi(s, a) = Qi(s, a) for all i.

Using the contraction and monotonicity of the soft Bellman operator T π we have

Qπ(s, a) = lim
k→∞

(T π)kQmax(s, a) ≥ Qi(s, a) for all i.
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We have just showed (5). In order to show (6), we note that

V π(s) ≡ αH[π(·|s)] + Ea∼π [Qπ(s, a)]
≥ αH[π(·|s)] + Ea∼π [Qmax(s, a)]

= α logZπ(s). (15)

Similarly, we have, for all i,

V i(s) = Ea∼πi(·|s)
[
Qi(s, a)− α log πi(a|s)

]
≤ Ea∼πi(·|s) [Q

max(s, a)− α log πi(a|s)]
= α logZπ(s)− αDKL(πi(·|s)‖π(·|s))
≤ α logZπ(s). (16)

The bound (6) follows from (15) and (16).

A.2. DC Proof

Theorem 3.2 (DC Optimality) Let πi, πj be α max-ent optimal policies for tasks with rewards ri and rj with max-ent
action-value functions Qi, Qj . Define C∞b (st, at) as the fixed point of

C
(k+1)
b (st, at) = −αγEp(st+1|st,at)

[
log

∫
A
πi(at+1|st+1)

bπj(at+1|st+1)
(1−b) exp

(
− 1

α
C

(k)
b (st+1, at+1)

)
dat+1

]

Given the conditions for Soft Q convergence, the max-ent optimal Q∗b(s, a) for rb = bri + (1− b)rj is

Q∗b(s, a) = bQi(s, a) + (1− b)Qj(s, a)− C∞b (s, a)

∀s ∈ S, a ∈ A, b ∈ [0, 1]

We follow a similar approach to (Haarnoja et al., 2018a) but without making approximations and generalizing to all convex
combinations.

First note that since πi and πj are optimal then πi(a|s) = exp( 1
α (Q

i(s, a)− V i(s))).

For brevity we use s and s′ notation rather than writing the time index.

Define

Q
(0)
b (s, a) ≡ bQi(s, a) + (1− b)Qj(s, a) (17)

C(0)(s, a) ≡ 0 (18)

and consider soft Q-iteration on rb starting from Q
(0)
b . We prove, inductively, that at each iteration Q(k+1)

b = bQi(s, a) +
(1− b)Qj(s, a)− C(k+1)(s, a).
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This is true by definition for k = 0.

Q
(k+1)
b (s, a) = rb(s, a) + γαEp(s′|s,a)

[
log

∫
A
exp

1

α
Q

(k)
b (s′, a′)da′

]
(19)

= rb(s, a)+ (20)

γαEp(s′|s,a)
[
log

∫
A
exp(

1

α
(bQi(s′, a′) + (1− b)Qj(s′, a′)− C(k)(s′, a′)))da′

]
= rb(s, a)+ (21)

Ep(s′|s,a)
[
bV i(s′) + (1− b)V j(s′) + α log

∫
A
exp(b log πi(a

′|s′) + (1− b) log πj(a′|s′)−
1

α
C(k)(s′, a′))da′

]
= bQi(s, a) + (1− b)Qj(s, a)+ (22)

αγEp(s′|s,a)
[
log

∫
A
exp(b log π1(a

′|s′) + (1− b) log π2(a′|s′)−
1

α
C(k)(s′, a′))da′

]
= bQi(s, a) + (1− b)Qi(s, a)− C(k+1)

b (s, a). (23)

Since soft Q-iteration converges to the α max-ent optimal soft Q then at the limit k → inf theorem 3.2 holds.

One can get an intuition for C∞b (s, a) by noting that

C
(1)
b (s, a) = γαEp(s′|s,a) [(1− b)Db (π1(·|s)‖π2(·|s))] (24)

where Db is the Rényi divergence of order b. C∞b (s, a) can be seen as the discount sum of divergences, weighted by the
unnormalized product distribution π1(a|s)bπ2(a|s)1−b.

A.3. N policies

It is possible to extend Theorem 3.2 to the case with N policies in a straightforward way.

Theorem A.1 (Multi-policy DC Optimality) Let π1, π2, ..., πN be α max-ent optimal policies for tasks with rewards
r1, r2, ..., rN with max-ent action-value functions Q1, Q2, ..., QN .

Define C∞w (st, at) as the fixed point of

C
(k+1)
w (st, at) = −αγEp(st+1|st,at)

[
log
∫
A

(∏N
i=1 πi(at+1|st+1)

wi

)
exp(− 1

αC
(k)
w (st+1, at+1))dat+1

]
Given the conditions for Soft Q convergence, the max-ent optimal Q∗w(s, a) for the convex combination of rewards
rw =

∑N
i=1 riwi is

Q∗w(s, a) =
∑N
i=1 wiQ

i(s, a)− C∞w (s, a)

∀s ∈ S, a ∈ A,w ∈ {w|
N∑
i=1

wi = 1 and wi ≥ 0}

Note that wi refers to component i of the vector wi.

The proof is very similar to the two reward case above.

Define

Q(0)
w ≡

N∑
i=1

wiQ
i(s, a) (25)

C(0)
w ≡ 0 (26)
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and again consider soft Q-iteration on rw. We prove by induction that at each iteration

Q(k+1)
w (s, a) =

N∑
i=1

wiQ
i(s, a)− C(k+1)

w (s, a) (27)

Again, this is true by definition for k = 0. Now we consider a step of Soft Q iteration

Q(k+1)
w = rw(s, a) + γαEp(s′|s,a)

[
log

∫
A
exp

1

α
Q(k)

w (s′, a′)da′
]

(28)

= rw(s, a) + γαEp(s′|s,a)

[
log

∫
A
exp

1

α

(
N∑
i=1

wiQ
i(s′, a′)− C(k)

w (s, a)

)
da′

]
(29)

= rw(s, a) + γEp(s′|s,a)

[
N∑
i=1

wiV
i(s′) + α log

∫
A
exp

(
N∑
i=1

wi log πi(a
′|s′)− 1

α
C(k)

w (s′, a′)

)
da′

]
(30)

=

N∑
i=1

wiQ
i(s, a) + αγEp(s′|s,a)

[
log

∫
A
exp(

N∑
i=1

wi log πi(a
′|s′)− 1

α
C(k)

w (s′, a′))da′

]
(31)

=

N∑
i=1

wiQ
i(s, a)− C(k+1)

w (s, a) (32)

Since soft Q-iteration converges to the α max-ent optimal soft Q then Q∗w(s, a) =
∑N
i=1 wiQ

i(s, a)− C(k+1)
w (s, a) for all

s ∈ S, a ∈ A.

Note that, in practice, estimating C∞w may be more challenging for larger N . For compositions of many policies, GPI may
be more practical.

B. Theoretical properties of the composition methods

Method Optimal Bounded loss Requires φ Requires f(s, a|b)
CO
CondQ X na X X
GPI X X
DC X na X

Table 1. Theoretical properties of different approaches to max-ent transfer. The methods compared are: CO, CondQ, max-ent GPI (over
a fixed, finite set of policies), and DC. The columns indicate whether the transfer policy is optimal, the regret of the transfer policy is
bounded, whether rewards for all tasks φ need to be observed simultaneously during training and whether the method requires learning a
function conditional on the transfer task b, f(s, a|b). DC is the only method that both recovers (in principle) the optimal policy and does
not require observing φ during training.

C. Algorithm details
C.1. Transfer algorithm

Algorithm 2 AISBP transfer algorithm
Load trained parameters θQ, θq , θψ , θC , θQb

.
Accept transfer task parameter b, transfer method ∈ CO, GPI, DC, CondQ.
while testing do

Importance sample transfer policy πb(a|s) ∝ exp 1
αQ

method(s, a) with mixture proposal pb(a|s)θq .
end while
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C.2. All losses and estimators

We use neural networks to parametrize all quantities. For each policy we learn an action-value QθQ(s, a), value VθV (s) and
proposal distribution qθq (a|s). We use target networks for the proposal distribution qθ′q (a|s) and value Vθ′V (s).

Here we enumerate all of the losses and their estimators. We use temporal difference (TD(0)) learning for all the RL losses,
so all losses are valid off-policy. We use a replay buffer R and learn by sampling minibatches of SARS tuples of size B, we
index over the batch dimension with l and use s′l to denote the state following sl, so the tuple consists of (sl, al, rl, s′l). For
importance sampled estimators we sample N actions for each state sl and use alk to denote sample k for state l.

We learn a set of n policies, one for each task in T indexed by i. However, we write the losses for a single policy and drop i
for notational simplicity.

C.2.1. PROPOSAL LOSS

The proposal loss minimizes the KL divergence between the Boltzmann distribution π(a|s) ∝ exp( 12Q(s, a)) and the
proposal distribution.

L(θq) = ER
[
Ea∼π(·|s)[log π(a|st)− log qθq (a|st)]

]
(33)

As described in the text, this loss is estimated using importance sampling with a mixture distribution p(a|s) containing
equally weighted components consisting of the target proposal distribution qθ′q (a|s) for all policies and the uniform
distribution.

p(a|s) = 1

n+ 1

(
1

V A
+

n∑
i=1

qiθ′q (a|s)

)
(34)

where V A is the volume of the action space (which is always bounded in our case).

The proposal loss is estimated using self-normalized importance sampling

L(θq) ≈ −
1

B

B∑
k=1

N∑
l=1

wkl log qθq (a|st), (35)

w′kl =
1
α (QθQ(sk, akl))

p(akl|sk)
; wkl =

wkl′∑N
m=1 w

′
km

. (36)

C.2.2. VALUE LOSS

The soft value loss is

L(θV ) =ER
[
1

2
(VθV (st)− α log

∫
A
exp(

1

α
QθQ(st, a))da)

2

]
(37)

We estimate this using importance sampling with the proposal distribution qθq (a|s) which is trying to fit the policy π.

L(θV ) ≈
1

2B

B∑
l=1

(VθV (sl)− α logZ)
2 (38)

Z =

[
1

N

N∑
k=1

exp( 1
αQθQ(sl, alk))

qθq (alk|sl)

]
(39)
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C.2.3. ACTION-VALUE LOSS

The TD(0) loss for QθQ is

L(θQ) =ER
[
1

2
(QθQ(st, at)− (r(st, at, st+1) + γVθ′V (st+1)))

2

]
(40)

This does not require importance sampling to estimate and can be straightforwardly estimated as

L(θQ) ≈
1

2B

B∑
l=1

(QθQ(sl, al)− (rl + γVθ′V (s
′)))2 (41)

The action-value is parametrized as an advantage function QθQ(s, a) = Vθ′V (s) +AθA(s, a).

C.2.4. STATE DEPENDENT SUCCESSOR FEATURES LOSS

To facilitate max-ent GPI we learn successor features for each policy, both state-action dependent features ψθψ (s, a) and
state-dependent ΥθΥ(s). As with value, we use a target network for the state-dependent features Υθ′Υ

(s)

L(θΥ) =ER
[
1

2
(ΥθΥ(st)− Eat∼π(at|st)[ψθψ (st, at) + α1(−QθQ(st, at) + α logZ(st))])

2

]
This loss is estimated using self-normalized importance sampling with proposal qθq

L(θΥ) ≈ 1

2B

B∑
l=1

N∑
k=1

wlk

[
(ψiθψ (sl, alk)−Q

i
θQ(sl, alk) + α logZ(sl))

2
]
, (42)

wlk ∝
exp( 1

αQ
i(sl, alk))

qiθq (alk|sl)
. (43)

We use the importance sampled estimate of Z from eq 39, rather than the value network which may be lagging the true
partition function. We use self-normalized importance sampling to avoid the importance weights depending on α logZ(sl)
(this introduces a bias, but in practise appears to work well).

C.2.5. STATE-ACTION DEPENDENT SUCCESSOR FEATURES LOSS

The state-action dependent successor feature loss is

L(θψ) =ER
[
1

2
(ψθQ(st, at)− (φ(st, at, st+1) + γΥθ′Υ

(st+1)))
2

]
. (44)

for which we use the following estimator

L(θψi) ≈ 1

2B

B∑
l=1

(ψiθψ (sl, al)− (φl + γΥθ′Υ
(s′l)))

2. (45)

ψθψ is parametrized as a “psi-vantage” ψθψ (s, a) = Υθ′Υ
(s) +ψAθA(s, a).

C.2.6. DC CORRECTION

We learn the divergence correction for each pair of policies πi(a|s), πj(a|s). As described in the text, in order to learn
CθC (s, a, b) for all b ∈ [0, 1], we sample b. We also use a target network Cθ′C (s, a, b). The loss is then

L(θC) = Es∼R,b∼U(0,1)[
1
2 (CθC (s, a, b) + αγEp(s′|s,a)[log

∫
A exp(b log πi(a

′|s′)+ (46)

(1− b)πj(a′|s′)−
1

α
CθC′ (s

′, a′, b))da′])2].
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This loss is challenging to estimate, due to the dependence on two policies. We importance sample using a mixture of all
proposal distributions uniform p(a|s) (equation 34). We denote the samples of b ∼ U(0, 1) for each batch entry bl. Note the
choice of uniform distribution for b is not required, other distributions that ensure the estimator works well for b ∈ [0, 1]
would also work. The importance sampled estimator is then

L(θC) ≈
1

N

B∑
l=1

(
CθC (sl, al, bl)− αγ log

[
1

N

N∑
k=1

Ctargetθ′C
(s′l, a

′
lk, bl)

p(alk′ |sl)

])2

, (47)

Ctargetθ′C
(s′l, a

′
lk, bl) ≡ exp(

1

α
(blQ

i
θQ(s

′
l, a
′
lk) + (1− bl)QjθQ(s

′
l, a
′
lk)− Cθ′C (s

′
l, a
′
lk, bl)). (48)

We parametrized CθC as an advantage function CθC (s, a, b) = CAθCA
(s, a, b) + CBθCB

(s, b) with an additional loss to
constrain this parametrization

L(θB) = Ea∼q(·|s),s∼R
[
1

2
(CAθCA

(s, a, b))2
]

(49)

which can be straightforwardly estimated by sampling from q

L(θB) ≈
1

2NB

B∑
l=1

N∑
k=1

(CAθCA
(sl, alk, bl))

2 (50)

C.2.7. CONDQ

We also consider, as a control, learning the action-value function conditional on b directly (Schaul et al., 2015), in a similar
way to the DC correction. We learn both a conditional value VθVb

(s, b) and QθQb
(s, a, b), again by sampling b uniformly

each update.

L(θVb
) = ER,b∼U(0,1)

[
1

2
(VθVb

(s, b)− α log

∫
exp(

1

α
QθQb

(s, a, b)))2
]
, (51)

LθQ = ER,b∼U(0,1)

[
1

2
(QθQb

(s, a, b)− (rb + γVθVb
(s′, b)))2

]
, (52)

where computing rb for arbitrary b requires φ to have been observed.

We estimate Cond-Q with the same importance samples as C from p(a|s) and again sample b ∼ U(0, 1) for each entry in
the batch. We use target networks for Vθ′V (s, b) and parametrize QθQ(s, a, b) = Vθ′V (s, b) +AθA(s, a, b).

The conditional value estimator is

L(θV ) ≈
1

2B

B∑
l=1

(
VθVb

(sl, bl)− α log
1

N

N∑
k=1

exp( 1
αQθQb

(sl, alk, bl)

p(alk|sl)

)2

(53)

and action-value estimator is

L(θQ) ≈
1

2B

B∑
l=1

(
QθQb

(sl, al, bl)− (rb + γVθ′Vb
(s′l, bl))

)2
(54)

C.3. Sampling the product of proposals

The proposal distributions qi(a|s) are mixtures of M (truncated) normals (equation 7). We ignore the truncation when
computing the product of proposals qij(a|s).

The product of two M component mixtures of normals results in another mixture of normals with M2 components (e.g.
Schrempf et al., 2005). Since for all experiments M is a relatively small integer (maximum is 16) we sample from the
product of proposals in a naive way.
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D. Justification for the DC-Cheap heuristic
We wish to estimate C∞b (s, a) (defined in Theorem 3.2) while avoiding learning a conditional function of b. We make two
(substantial) assumptions to arrive at this approximation.

Firstly, we assume policies πi(a|s), πj(a|s) are Gaussian

πi(a|s) = exp

(
− (a− µi(s))2

2σ(s)2

)
(55)

and the variance σ(s) is the same for both policies given a state (it may vary across states).

Secondly, we assume C(k)
b (s, a) = C

(k)
b (s) is independent of action. This is approximately correct when nearby states have

similar Rényi divergences between policies.

We make use of a result by Gil et al. (2013) that states that the Rényi divergence of order b for two Gaussians of the same
variance is

Db (N (µ1, σ)‖N (µ2, σ)) =
1

2

b(µ1 − µ2)
2

σ2
. (56)

We first define

Gb(s) ≡ (1− b)Db (πi(·|s)‖πj(·|s)) = − log

∫
πi(a|s)bπj(a|s)(1−b)da. (57)

From equation 55

Gb(s) = 4b(1− b)G 1
2
(s). (58)

Given these assumptions we show inductively that C(k)
b (s, a) = 4b(1− b)C(k)

1/2(s, a) ∀k, b ∈ [0, 1].

Since C(0)
b (s, a) = 0 ∀b ∈ [0, 1], a ∈ A, s ∈ S this is true for k = 0. We show it holds inductively

C
(k+1)
b (s, a) = −αγEp(s′|s,a)

[
log

∫
A
πi(a

′|s′)bπj(a′|s′)(1−b) exp(−
1

α
C

(k)
b (s′, a′))da′

]
(59)

= γEp(s′|s,a)
[
αGb(s

′) + C
(k)
b (s′)

]
(60)

= 4b(1− b)C(k+1)
1
2

(s, a). (61)

Obviously these assumptions are not justified. However, note that we estimate the true divergence for C∞1/2, i.e. without any
assumptions of Gaussian policies and this heuristic is used to estimate C∞b from C∞1/2. In practise, we find this heuristic
works in many situations where the policies have similar variance, particulary when bounded by GPI.
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E. Additional Figures

(a) U task (b) R task
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Figure 5. Additional results for figure 1 (tabular)
(a) The U(p) and (b) R(ight) tasks.
(c) The CO policy for the LU task. Note how even far from the reward (e.g. bottom right corner) the CO policy is near optimal, contrast
with the GPI policy for this task (figure 1f).
The log regret (smaller is better) as function of b (rb = br1 + (1− b)r2) for the transfer task for the (d) incompatible (Left-Right) task,
(e) compatible (Left Up) task and (f) T(ricky) task.
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Figure 6. Additional results for figure 2 (point mass tricky)
(a) The returns (larger is better) for the transfer task as a function of b (rb = br1+(1− b)r2) including the DC heuristics. DC-Cheap+GPI
performs almost as well as DC.
(b) The Rényi divergence of the two base policies as a function of position: the two policies are compatible except near the bottom left
corner where the rewards are non-overlapping.

0.0 0.5 1.0
b

0.6

0.7

0.8

R
e
tu

rn

Figure 7. Returns for figure 3 (planar manipulator)
The returns for the transfer task as a function of b (rb = br1 + (1− b)r2) including the DC heuristics. DC-Cheap+GPI performs almost
as well as DC. Shaded bars show SEM (5 seeds).
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Figure 8. Additional results for figure 4 (mobile bodies)
(a) Jumping ball task. The task has rewards (1, 0), (0, 1) in the green and red boxes respectively and (0.75, 0.75) in the blue square.
The returns for the transfer task as a function of b (rb = br1 + (1− b)r2) including the DC heuristics for the jumping ball (b) and ant (c).
Shaded bars show SEM (5 seeds for ant, 3 seeds for jumping ball). As expected, CO performs poorly on these tasks. CondQ struggles to
consistently get good returns on the ant task. The DC heuristics perform well on these tasks.
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Figure 9. Ant on non-composable subtasks
(a) Trajectories of the ant during transfer on non-composable subtasks. In this experiment the two base tasks consists of rewards at the red
and green square respectively. As expected, in this task, where the two base tasks have no compositional solution, CO (red) performs
poorly with trajectories that end up between the two solutions. GPI (blue) performs well, as does DC (black). CondQ does slightly worse.
(b) Box-plot of returns from 5 seeds (at b = 0.5).
(c) Returns as a function of b, SEM across 5 seeds is plotted, but is smaller than the line thickness.

F. Experiment details
All control tasks were simulated using the MuJoCo physics simulator and constructed using the DM control suite (Tassa
et al., 2018) which uses the MuJoCo physics simulator (Todorov et al., 2012).

The point mass was velocity controlled, all other tasks were torque controlled. The planar manipulator task was based off
the planar manipulator in the DM control suite. The reward in all tasks was sparse as described in the main text.

During training for all tasks we start states from the randomly sampled positions and orientations. For the point mass,
jumping ball and ant we evaluated transfer starting from the center (in the walker environments, the starting orientation was
randomly sampled during transfer, the point mass does not have an orientation). For the planar manipulator transfer was
tested from same random distribution as in training. Infinite time horizon policies were used for all tasks.

Transfer is made challenging by the need for good exploration. That was not the focus on this work. We aided exploration
in several ways: during training we acted according to a higher-temperature policy αe = 2α. We also sampled actions
uniformly in an ε-greedy fashion with ε = 0.1 and added Gaussian exploration noise during training. This was sufficient to
explore the state space for most tasks. For the planar manipulator and the jumping ball, we found it necessary to induce
behavior tasks by learning tasks for reaching the blue target. This behavior policy was, of course, only used for experience
and not during transfer.

Below we list the hyper-parameters and networks use for all experiment. The discount γ and α were the only sensitive
parameters that we needed to vary between tasks to adjust for the differing magnitudes of returns and sensitivity of the
action space between bodies. If α is too small then the policies often only find one solution and all transfer approaches
behave similarly, while for large α the resulting policies are too stochastic and do not perform well.

The state vector was preprocessed by a linear projection of 3× its dimension and then a tanh non-linearity. All action-state
networks (Q, ψ, C) consisted of 3 hidden layers with elu non-linearities (Clevert et al., 2015), with both action and
preprocessed state projected by linear layers to be of the same dimensionality and used for input the first layer. All value
networks and proposal networks consisted of 2 layers with elu non-linearities. The number of neurons in each layer was
varied between environments, but was kept the same in all networks and layers (we did not sweep over this parameter, but
choose a reasonable number based on our prior on the complexity of the task).

Below we list the per task hyper-parameters
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Proposal learning rate 10−3

All other learning rates 10−4

Value target update period 200
Proposal target update period 200
Υ target update period 500
Number of importance samples for all estimators during learning 200
Number of importance samples for acting during training 50
Number of importance samples for acting during transfer 1000

Table 2. Parameters the same across all experiments

Task Number of units α γ
Point mass 22 1 0.99
Planar Manipulator 192 0.05 0.99
Jumping Ball 192 0.2 0.9
Ant 252 0.1 0.95

Table 3. Parameters varied between experiments


