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ABSTRACT
Most recommender systems are myopic, that is they optimize based
on the immediate response of the user. This may be misaligned
with the true objective, such as creating long term user satisfaction.
In this work we focus on mobile push notifications, where the long
term effects of recommender system decisions can be particularly
strong. For example, sending too many or irrelevant notifications
may annoy a user and cause them to disable notifications. However,
a myopic system will always choose to send a notification since
negative effects occur in the future. This is typically mitigated us-
ing heuristics. However, heuristics can be hard to reason about or
improve, require retuning each time the system is changed, and
may be suboptimal. To counter these drawbacks, there is signifi-
cant interest in recommender systems that optimize directly for
long-term value (LTV). Here, we describe a method for maximising
LTV by using model-based reinforcement learning (RL) to make
decisions about whether to send push notifications. We model the
effects of sending a notification on the user’s future behavior. Much
of the prior work applying RL to maximise LTV in recommender
systems has focused on session-based optimization, while the time
horizon for notification decision making in this work extends over
several days. We test this approach in an A/B test on a major social
network. We show that by optimizing decisions about push notifi-
cations we are able to send less notifications and obtain a higher
open rate than the baseline system, while generating the same level
of user engagement on the platform as the existing, heuristic-based,
system.

1 INTRODUCTION
Modern recommender systems make extensive use of machine
learning models trained on user feedback. Typically, such mod-
els are used to predict some immediate response of the user, such
as the probability that the user will interact with the content. A
known weakness of such approaches is that they are myopic, since
they do not account for the effect of their actions on users or the
recommender system in the future. There are several mechanisms
through which this effect can occur. One well-known positive ex-
ample (which we do not focus on in this work) is exploration [Chen
2021], since feedback from the user can be used to learn new user
interests or recommend additional content in the future. A negative
example is “clickbait”; content that may, on the surface, appear
enticing and generate immediate user engagement but ultimately
proves disappointing and erodes user trust [Potthast et al. 2018;
Zannettou et al. 2018]. Perhaps most relevant to the work here, re-
peatedly showing content which is ignored can habituate the user
to ignoring the content without even attending to it (this phenom-
enon is particularly acute and well studied for online advertising
∗ Corresponding authors: conoro@twitter.com, jjh@twitter.com.

where it is known as “ad blindness” [Benway 1998; Burke et al.
2005; Yan et al. 2020]).

In this work, we consider the problem of push notifications. Push
notifications are an important way for content to be consumed on
mobile devices, where a user is sent a notification about content that
may be relevant to them. Because such notifications may interrupt
a user and occur when the user is not actively seeking informa-
tion, users may have a low tolerance for irrelevant or distracting
notifications, compared to content they actively seek by opening a
particular application.

One distinctive property of push notifications is that the system
can decide not to send any notification at all to the user at a given
time. This may be the optimal action, for example, if there is no
content of high relevance to the user at the current time. However,
a myopic recommender system will always send a notification to
the user, since any negative consequences of sending a notification
occur in the future. Negative consequences could include the user
choosing to disable notifications if they receive irrelevant content or
simply learning to ignore notifications [Pham et al. 2016; Wohllebe
2020].

The weaknesses of a myopic system are often addressed by hand
crafted heuristics tominimize these issues. The problemwith heuris-
tic approaches is that they can be challenging to reason about, im-
prove, and tune. Additionally, as other changes to the recommender
system are implemented, the parameters chosen for the heuristic
system may perform poorly. Since the heuristic rules were not de-
rived in a principled way, they often require manual effort to update
which can be time consuming. Finally, the performance of heuristic
approaches is likely to be suboptimal.

In this work, we introduce a principled approach to sending
notifications, using a model-based reinforcement learning (RL) ap-
proach to determine whether sending a notification is optimal. We
construct a model of how user behavior in the future will be affected
by notifications they receive by analysing logged data of previous
sent notifications. We use this model to find the optimal policy for
deciding if a notification should be sent in order to maximise long
term value.

Most prior work on recommender systems that optimize for long
term value is session-based, often modeling user behavior over the
course of a single session [Dulac-Arnold et al. 2015; Hu et al. 2018;
Ie et al. 2019; Mazoure et al. 2021, e.g.]. The time horizons in this
work are much longer (days) and involve repeated interactions with
the app rather than a single session.

We test the approach in an production experiment on the Twitter
social network. We show that the proposed system is able to send
significantly less notifications than the baseline heuristic systems,
while maintaining the same level of user engagement and resulting
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in a significantly higher open rate. Lastly, we discuss the impor-
tance of long term value (LTV) to recommender systems and future
improvements planned for the system.

1.1 Related work
Recently, there has been significant interest in applying reinforce-
ment learning to construct recommender systems that optimize for
LTV [Zheng et al. 2018]. This raises the question of how “long” is
meant in “long term value.” Many recommender problems have a
natural concept of a “session,” a contiguous interaction with the
user, and optimize for some session based metric [Chen et al. 2019;
Dulac-Arnold et al. 2015; Mazoure et al. 2021; Zou et al. 2019] (in
some cases with a terminating estimate of future session value)
such as session length or conversion in a session [Hu et al. 2018].
These sessions typically last minutes to hours.

One challenge in developing and evaluating LTV recommender
systems is that it is often difficult to estimate their performance
offline from static datasets [Mladenov et al. 2021] without making
unrealistic assumptions, in part because they often lack meaningful
sequential structure [Harper and Konstan 2015]. One approach is
to construct simulated recommender environments [Dulac-Arnold
et al. 2015; Mladenov et al. 2021; Rohde et al. 2018], although this
introduces challenges of ensuring these simulations are realistic. In
this work, we focus on testing the system in a production experi-
ment with real users.

We study the problem of maximising LTV for push notifications
by making decisions about when to send a notification. Yancey
and Settles [2020] proposed contextual bandit based algorithms for
choosing which notification to send and [Yue et al. 2022] studied
ranking losses for push notifications. However, these works did
not consider the question of when to send a notification. Biyani
and Ragain [2022]; Gao et al. [2018]; Zhao et al. [2018] approach
this problem by reducing it to volume control (how many notifi-
cations does a user wish to receive) but these approaches do not
use notification context or directly attempt to optimize for LTV.
Yuan et al. [2019] went further by using a state transition model to
attribute user engagement driven by push notifications. In parallel
with this work, Yuan et al. [2022] proposed a model-free RL ap-
proach to decision making in push notifications and made several
of the same points regarding the challenges of using heuristics for
push notification decision making.

2 PROBLEM SETUP
The majority of internet users now access the internet via a mobile
device [Handley 2019]. One pathway to consuming content on
mobile devices is through “push notifications.” These will appear
on the device even if the user is not using the phone or the specific
app. Figure 1 shows examples of push notifications from Twitter.
At their best these can alert the user to timely, relevant content
without the user needing to actively seek out information.

However, since such notifications can interrupt the user, they
typically have a low tolerance for irrelevant notifications. Because
such content is sent without being actively sought by the user
(though the user must agree to receiving notifications initially),
there is an additional action that is not available in most other

Figure 1: Examples of Twitter push notifications. The user
may select to open a notification or dismiss it (they can also
choose to block future notifications).

recommender system problems. The system may also choose not
to send the user any content at the present time.

Algorithm 1 provides a pseudocode outline of the push notifica-
tion system at Twitter. Periodically, the system iterates through all
users, obtains a set of candidate documents that could be sent to
the user, ranks them, and selects a document to send.

The focus of this work is the filtering policy, 𝜋 (𝑢, 𝑥), that is then
applied to determine if this document is sent to the user or if no
notification is sent. In general, this policy could be stochastic, but
in this work we focus only on deterministic policies. We define the
policy as a function mapping from user and document selected to
send to a binary decision 𝜋 : U ×X → {0, 1}.

2.1 Send limit
In addition to the policy, the existing system also has a limit on the
total number of push notifications that can be sent to a user in a
single day [Biyani and Ragain 2022]. The limit is set per user type
(see Section 2.4). We denote the limit for a user as 𝜆(𝑢).

In some of the experiments, the send limit was increased com-
pared to the production baseline. The reasoning for this is that if
the policy that decides whether to send a notification based on
specific context is introduced, the optimal send limit may change.
For example, if the 𝜋 (𝑢, 𝑥) was optimal for the true business ob-
jective, there would be no need to have a specific send limit, since
this would be implicitly decided by the policy. The approaches we
introduce below attempt to make more contextual decisions and
rely less on the send limit.



Should I send this notification? Optimizing push notifications decision making by modeling the future.

A hypothetical example where increasing the send limit and
relying on the policy to make contextual decisions may result in
a better user experience is: a user is interested in some breaking
event and so wishes to receive a large number of notifications today,
based on the contextual information that indicates their interest in
this event. However, on other days they may wish to receive many
fewer notifications. By making decisions more contextually rather
than using a fixed limit, it is possible to attempt to solve this user
need better.

Algorithm 1 Pseudocode of a single pass of the push notification
system. The focus of this work is the policy, 𝜋 (𝑢, 𝑥), that makes a
binary decision which determines if any notification is sent to the
user.

for 𝑢 ∈ U do ⊲ Iterate over all users
if 𝑢 has not been sent 𝜆(𝑢) notifications today then

Obtain candidate documents {𝑥1, · · · 𝑥𝑛} for user 𝑢 avail-
able this time.

Rank the documents and select document 𝑥 ∈ {𝑥1, · · · 𝑥𝑛}
to send the user.

if 𝜋 (𝑢, 𝑥) then ⊲ Decide if notification 𝑥 should be sent
to the user.

Send document to user and receive response𝑦 ∈ {0, 1}
Log (𝑢, 𝑥,𝑦)

else
Don’t send anything to the user at this time.

end if
end if

end for

2.2 The objective
What should be the objective of the policy 𝜋? The ultimate business
objective of the system is to provide compelling and timely content
that is relevant to users, resulting in them finding value in these
notifications and remaining users of the platform. The performance
of a policy can be estimated by running A/B experiments, where
users are randomly chosen to be exposed to the policy for a period
of time, and then observing user behavior, such as whether they
continue using Twitter or if they choose to block notifications from
Twitter.

A number of metrics are examined in online A/B tests to ensure
a new method is improving the user experience for Twitter users.
Daily active users (DAU), the number of users who choose to login
to Twitter daily, is one key metric (this is typically correlated with
the number of notifications a user “opens” since when a user opens
a notification they become an active user that day). Another is
“reachability” which measures the number of users who choose
to enable push notifications from Twitter. Finally, the fraction of
notifications which users open (“open rate”) is another metric which
indicates if the notifications a user is receiving are relevant to them.

While DAU and reachability (and other metrics) can be measured
online, it is less clear how to directly optimize such an objective.
We define a more typical reinforcement learning objective, that is
the discounted future number of opened notifications:

𝐽 (𝜋) = E𝑢∼U
∞∑︁
𝑖=0

𝛾𝑖𝑦𝑖 (𝑢, 𝑥) (1)

The summation is over all notifications sent to a given user.
𝑦𝑖 (𝑢, 𝑥) ∈ {0, 1} denotes whether the user opens (𝑦 = 1) or ignores
the notification (𝑦 = 0). By definition, 𝑦 = 0 for any notification
that is not sent (since it cannot be opened by the user, as they never
receive it). 𝛾 ∈ [0, 1) is the discount factor that determines how
much the objective weights the future opens versus the open of the
current notification. We desire to obtain a policy 𝜋∗ = max𝜋 𝐽 (𝜋)
that maximises the discounted opens across all users.

Discounted opens are still not the true objective, since opening
notifications does not guarantee that the user is deriving value
from them. Additionally, the true discount factor may be very close
to 1 (such as if the user is still using the platform a year from
now), but such a high discount factor is challenging to measure and
optimize. However, any non-zero discount factor is likely to be a
better approximation to the true goals of the system than 𝛾 = 0 that
ignores all future value. As discussed above, a number of metrics
of real user behavior are measured in online A/B tests to determine
if a policy is performing well.

2.3 Long Term Value
Many recommender systems today make extensive use of machine
learning models for ranking content. These models are typically
myopic, meaning they optimize some immediate response of the
user.

The myopic case in this problem corresponds to optimizing Equa-
tion 1 with 𝛾 = 0. The optimal myopic policy is trivial, 𝜋0 (𝑢, 𝑥) =
1 ∀𝑢, 𝑥 . That is, the myopic policy will always send the push no-
tification to the user because there is always some probability
𝑝 (𝑦 = 1|𝑢, 𝑥) > 0 that the user may open the notification (even
if it is very low in some cases), but if no notification is sent then
𝑝 (𝑦 = 1|𝑢, 𝑥) = 0 by definition since an unsent notification cannot
be opened.

As the name implies, such a myopic policy may be suboptimal
by failing to account for the future impact of its actions. In our case,
there are numerous possible mechanisms through which a myopic
policy might lead to poor outcomes. If a user receives notifications
they find irrelevant or distracting they have numerous ways of
responding. They may choose to disable all future notifications
from the Twitter app, or even uninstall the app entirely. More subtly,
they may habituate to ignoring Twitter notifications if they learn
the notifications are unlikely to be relevant. Thus, a myopic policy
which always sends notifications may harm the user experience
and result in poor performance on longer term objectives.

The challenges of the mismatch between the myopic policy ob-
jectives and the true objectives of a recommender system are well
known. Typically, they are mitigated by the use of heuristic rules
built on top of the myopic ML ranking models, including one of the
baselines we compare against online in this work (see Section 3.1).
Such heuristics can be challenging to construct, difficult to reason
about, and may require continual retuning over time as components
of the system are modified [Yuan et al. 2022].
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In this work, we introduce a model-based RL approach to directly
optimize Equation 1 with a non-zero discount factor, avoiding the
use of heuristics and providing a principled approach to achieving
business objectives. By using a data-driven model of user behavior,
the system can adapt to observed changes in user behavior without
manual intervention. We introduce our approach in Section 3.2

2.4 User types
Both the baseline and our new method make use of user types.
We classify users into one of 6 user types based on their push
notification behavior (for example, if they open a large fraction of
their notifications, or choose to receive few notifications). This is
important when choosing the policy since users may have different
preferences regarding desirable notification frequency. We denote
the type of user 𝑢 as 𝑐 (𝑢).

3 METHODS
3.1 Baseline
The first baseline simply sets 𝜋0 (𝑢, 𝑥) = 1. That is, this baseline
sends all notifications. In this baseline the only constraint on how
many notifications a user receives is the send limit 𝜆(𝑢). This policy
can be viewed as a “greedy” baseline since it is the optimal policy for
the objective in Equation 1when the future is discounted completely
𝛾 = 0 (see Section 2.3). We refer to this as the “No Filtering” method.

The second baseline is a heuristic filter system. As discussed
above, in common with many recommender systems, heuristics are
used to incorporate ML predictions into the system to improve the
user experience.

Both the heuristic policy and the RL policy (next section) make
use of the predicted probability the user 𝑢 will open the notification
𝑥 if sent to them: 𝑝 (𝑦 = 1|𝑢, 𝑥). This is computed as part of the
process of ranking the documents.

In the heuristic policy the notification is sent to the user if the
predicted open probability exceeds a threshold 𝑘 (where a different
threshold is used for each user type).

𝜋𝛽 (𝑢, 𝑥) =
{

1, if 𝑝 (𝑦 = 1|𝑢, 𝑥) > 𝑘 (𝑐 (𝑢))
0, otherwise

(2)

The threshold values were chosen by running a series of A/B experi-
ments at different values of 𝑘 to determine values which performed
best across the range of metrics outlined in section 2.2.

3.2 Reinforcement learning for filtering
The heuristic approach has several weaknesses. It is hard to reason
about how best to incorporate additional signals into the decision
making process. In addition, choosing the threshold 𝑘 by A/B exper-
iments requires significant manual effort so it is rarely performed.
Thus, changes to the system that affect the optimal value of 𝑘 may
not be detected for a long period of time, if at all. Finally, there is
no reason that it should be optimal for maximising LTV.

Our approach is to frame this problem as a RL problem and solve
it using a model-based approach. By obtaining the filtering policy
in a more principled way, it is easier to maintain and incorporate
additional signals in future.

We start by building a model of user behavior using empirical
data. Because the existing data was collected under a determin-
istic policy (mostly the No Filtering policy), it is challenging to
ensure the user behavior changes are causally due to the notifica-
tion decisions. We explain later how we correct for this limitation.
After performing exploratory data analysis, we determined a simple
model that captures some aspects of user behavior.

The data consists of a time series for each user that records the
document, 𝑥 , that was sent to the user at each notification time and
the outcome, 𝑦, indicating if the user opened the notification. This
dataset was limited in that there are no records of when the system
chose not to send a notification. Thus, the data consists of the user
and a series of documents that were sent to that user, along with
the outcome of each notification (𝑢, ((𝑥1, 𝑦1), (𝑥2, 𝑦2), ...(𝑥𝑇 , 𝑦𝑇 )))

We use the first half of the time series of each user to esti-
mate the empirical marginal open rate for this user, 𝑝 (𝑦 = 1|𝑢) =

1
𝑇 /2

∑𝑇 /2
𝑖=1 𝑦𝑖 . We excluded users from the analysis if, during the first

half of the time series there were very few notifications sent. This
eliminates new users (who might not be observed at all in the first
half of the time series) or users who were unreachable.

In the second half of the time series, we introduced the streak
value 𝑠 , which we define as the number of notifications in a row that
the user has either opened (positive number) or ignored (negative
number). For example, if the user has opened the last 3 notifications
then 𝑠 = 3, and if they ignore the next notification then it is set
to 𝑠 = −1 (i.e. it does not decrement to +2 but on an unopened
notification resets to 𝑠 = −1).

We use the second half of the time series to determine how the
empirical open rate, 𝑝 (𝑦 = 1|𝑢, 𝑠), varies from the user’s marginal
baseline open rate, based on the number of consecutive
opens/ignores 𝑠 and user type 𝑐 (𝑢). We assume that the streak
influences the user’s open probability by a multiplicative factor
that is the same for all users of the same user type. That is, we
assume that the probability that a user 𝑢, who opens Tweets with a
baseline open probability 𝑝 (𝑦 = 1|𝑢) and with an open streak of 𝑠 ,
opens a Tweet 𝑥 with probability:

𝑝 (𝑦 = 1|𝑢, 𝑠, 𝑥) = min(𝑓 (𝑐 (𝑢), 𝑠)𝑝 (𝑦 = 1|𝑢), 1) (3)

We bound this to ensure it remains a valid conditional probability,
although this bound is rarely encountered.

To estimate the factor 𝑓 (𝑐 (𝑢), 𝑠), we use the second half of the
time series (which is not used for computing user baselines). We
compute the streak value for each user, notification pair that was
sent in the second half of the time series. Then we “flatten” the time
series so that we have a set 𝐷 = (𝑢𝑖 , 𝑥𝑖 , 𝑠𝑖 , 𝑦𝑖 ) of tuples, indexed by 𝑖 ,
containing for each notification the user involved 𝑢𝑖 , the document
𝑥𝑖 , the streak value the user was in when the notification was sent
𝑠𝑖 and the outcome of the notification 𝑦𝑖 . The same user will appear
many times in the set, since each notification provides a distinct
tuple.

We estimate the factor in equation 3 using the empirical values
observed in this set:

𝑓 (𝑐 ′, 𝑠 ′) =
∑
𝑢𝑖 ,𝑠𝑖 ,𝑦𝑖 ∈𝐷 𝛿 (𝑐 ′, 𝑐 (𝑢))𝛿 (𝑠 ′, 𝑠)𝑦𝑖∑

𝑢𝑖 ,𝑠𝑖 ,𝑦𝑖 ∈𝐷 𝛿 (𝑐 ′, 𝑐 (𝑢))𝛿 (𝑠 ′, 𝑠)𝑝 (𝑦 = 1|𝑢𝑖 )
(4)

where 𝛿 is the Kronecker delta. This factor captures the empirically
observed difference in open rate when users of a particular user type
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have a certain streak value. Note that this analysis does not make
any use of the ranking model predictions 𝑝 (𝑦 = 1|𝑢, 𝑥), but only
uses the empirically observed labels 𝑦 and user-specific marginal
open rate 𝑝 (𝑦 = 1|𝑢𝑖 ). Figure 2a shows the resulting factors, which
form the basis of our user model. Additionally, we constrain the
function to monotonically increase with positive streak value and
monotonically decreasewith negative streak value. This (1) captures
the intuitive idea that sending a good notification should not reduce
user trust in the platform for any positive streak increment, nor
should sending a bad notification (that the user ignores) increase
user trust and (2) in the case of large positive streaks, biases the
behavior model against the noise that results from the fact that
these events are less frequent.

As discussed above, because all of the existing filtering policies
are deterministic, it is challenging to infer causal links in the data.
This model is corrected for user selection bias by using the user-
specific open rate, 𝑝 (𝑦 = 1|𝑢), and computing the change above or
below this rate. However, other sources of the observed correlation
between streak and open rate may exist. For example, if a user
ignores all notifications duringweekdays, but opens all notifications
on weekends, then this would result in an observed correlation
between the streak value and the open rate, but it is not caused by
the user being in a certain streak value.

We correct for lack of a causal model by a hyperparameter 𝜅,
which is the fraction of the correlation between streak 𝑠 and ob-
served open rate that we believe is causal. That is, we scale the
factor with 𝜅, 𝑓 (𝑐, 𝑠, 𝜅) = (𝑓 (𝑐, 𝑠) − 1)𝜅 + 1 (e.g. 𝜅 = 0 results in
𝑓 (𝑐, 𝑠) = 1 for all 𝑐 , 𝑠 and a myopic policy, since it implies none
of the observed user response is causal, in which case there is no
mechanism to positively or negatively affect future open rates). For
the production experiment, we tried policies computed using differ-
ent causal factors to determine which best explains user behavior.
We don’t include the 𝜅 in the Bellman equation below to reduce no-
tational overload, but we solved for and tried online several values
of 𝜅.

One reason that we might believe some of the correlation is
causal is that the user response we find from this analysis has an
intuitive explanation. When users open several notifications in
a row, they may learn to trust Twitter to send relevant content,
which could increase the probability of paying attention to Twitter
notifications in future. Conversely, repeatedly sending notifications
that aren’t opened further increases the likelihood that notifications
are ignored in future (repeated exposure to irrelevant content is
known to do this in ads literature [Yan et al. 2020]).

Using this model of user behavior, we can define the action-value function of an optimal deterministic policy. The action-value function is
defined as the expected discounted reward for taking action 𝑎𝑡 and then taking actions according to an optimal deterministic policy 𝜋∗ and
has a well-known Bellman recursive property:

𝑄𝜋∗
(𝑢, 𝑥𝑡 , 𝑠𝑡 , 𝑎𝑡 ) = E𝑥𝑘∼𝑝 ( · |𝑢),𝑎𝑘∼𝜋∗ ( · |𝑢,𝑥𝑘 ,𝑠𝑘 ),𝑦𝑙∼𝑝 ( · |𝑢,𝑥𝑙 ,𝑠𝑙 ,𝑎𝑙 ),𝑠𝑘∼𝑝 ( · |𝑦𝑘−1)

[
𝑦 (𝑢, 𝑥𝑡 , 𝑠𝑡 , 𝑎𝑡 ) +

𝑘+𝑇∑︁
𝑘=𝑡+1

𝛾𝑘−𝑡𝑦 (𝑢, 𝑥𝑘 , 𝑠𝑘 , 𝑎𝑘 )
]

(5)

= E𝑥𝑡+1∼𝑝 ( · |𝑢),𝑦∼𝑝 ( · |𝑢,𝑥𝑡 ,𝑠𝑡 ,𝑎𝑡 ),𝑠𝑡+1∼𝑝 ( · |𝑦𝑡 )

[
𝑦 (𝑢, 𝑥𝑡 , 𝑠𝑡 , 𝑎𝑡 ) + 𝛾 max

𝑎𝑡+1
𝑄𝜋∗

(𝑢, 𝑥𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1)
]

(6)

Notice that this action-value is solving for the finite horizon 𝑇 rather than the infinite horizon in Equation 1 (and we define 𝑄𝜋∗
= 0 at the

horizon 𝑘 +𝑇 ). This is to allow us to recursively solve this Bellman equation explicitly. We choose the horizon large enough that is a very
close approximation of the infinite horizon objective.
The recursive Bellman Equation 6 can be further simplified by noting several properties of the problem and one additional assumption.
Firstly, in order to practically use this approach in production, we use the calibrated prediction of the ranking model 𝑝 (𝑦 = 1|𝑢, 𝑥) to estimate
the marginal probability that a user will open a notification 𝑥 , 𝑝 (𝑦 = 1|𝑢, 𝑠, 𝑥) = min(𝑓 (𝑐 (𝑢), 𝑠)𝑝 (𝑦 = 1|𝑢, 𝑥), 1). Secondly, when estimating
the open probability of future notifications, we assume this user will have notifications which have an open probability sampled from the
distribution of observed open rates for users of the same user type 𝑝 (𝑥 |𝑐 (𝑢)). Finally, we note the the transition function of the streak is
deterministic given the outcome 𝑦 of a notification by definition. We can then write explicitly the optimal action value for 𝑎 = 1 (send) and
𝑎 = 0 (no notification sent).

𝑄𝜋∗
(𝑢, 𝑥𝑡 , 𝑠𝑡 , 𝑎𝑡 = 1) =min(𝑓 (𝑐 (𝑢), 𝑠𝑡 )𝑝 (𝑦𝑡 = 1|𝑢, 𝑥𝑡 ), 1)

[
1 + 𝛾 max

𝑎𝑡+1
E𝑥𝑡+1∼𝑝 ( · |𝑐 (𝑢))

[
𝑄𝜋∗

(𝑢, 𝑥𝑡+1,max(𝑠𝑡 , 0) + 1, 𝑎𝑡+1)
] ]

+

(1 − min(𝑓 (𝑐 (𝑢), 𝑠)𝑝 (𝑦 = 1|𝑢, 𝑥𝑡 ), 1)) 𝛾 max
𝑎𝑡+1
E𝑥𝑡+1∼𝑝 ( · |𝑐 (𝑢))

[
𝑄𝜋∗

(𝑢, 𝑥𝑡+1,min(𝑠𝑡 , 0) − 1, 𝑎𝑡+1)
]

(7)

𝑄𝜋∗
(𝑢, 𝑥𝑡 , 𝑠𝑡 , 𝑎𝑡 = 0) =𝛾 max

𝑎𝑡+1
E𝑥𝑡+1∼𝑝 ( · |𝑐 (𝑢)) [𝑄

𝜋∗
(𝑢, 𝑥𝑡+1, 𝑠𝑡 , 𝑎𝑡+1)]

(8)

Equation 7 (the value of sending the current notification) has two
terms since the possible outcomes of sending a notification are the

notification is opened (first term), thus the number of notifications
opened in a row (streak) 𝑠 increases, or it is ignored, thus the streak
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decreases. Equation 8 has only one term since if no notification is
sent, the streak will remain unchanged, and any opens will only
occur for future notifications.

If we ignore the min clipping on the probability of opening
(which almost never occurs in practice), the Bellman equations are
linear in 𝑝 (𝑦 = 1|𝑢, 𝑥). This substantially simplifies solving these
equations, since the expectations can be computed using only the
mean value (see appendix A). Noting this, the value of sending
or not sending a Tweet can be estimated in a few minutes on a
standard machine.

We use binary search to find the optimal threshold model score
such that sending the notification is LTV maximising. We compute
and store this for every combination of user type and streak 𝑠 .
This allows the implementation at inference for this policy to be
a simple table lookup using the user type and streak to determine
the threshold score above which a notification should be sent.

This use of a tabular lookup may appear similar to the baseline
policy, however, there are several important differences. This ap-
proach is more principled and thus easier to update or incorporate
new signals. Because this policy is computed using an analysis of
offline user behavior, it can be continuously updated in response to
changes in user behavior without running a new set of A/B tests.
Finally, this approach incorporates real time feedback from the user
into decision making.

3.3 Calibration
Crucial to the decision making process is the estimate of the proba-
bility that a Tweet will be opened 𝑝 (𝑦 = 1|𝑢, 𝑥). If different ranking
models are deployed, they may score Tweets differently. We use
isotonic regression [Chakravarti 1989] fit to the most recent 24
hours of data to calibrate the predicted open probability. This is
updated daily so that any shifts in model score will be corrected.

4 RESULTS
We tested the methods described above in an online production
experiment which ran for 33 days with a subset of Twitter users
assigned to each “treatment” (a specific filtering policy and hyper-
parameters). Users in this experiment were in the same treatment
condition throughout the experiment. This stability was important
since we are optimizing for long-term behavior, so it’s possible that
a filtering approach may temporarily improve performance but
then reverse this trend.

For the RL methods, as described above, we performed offline
analysis of logged user data to build a user model (Figure 2a). Given
this model we computed the optimal policies (Figure 2b), 𝜋∗, at
different values of 𝜅 (the fraction of user behavior change that we
believe is causally due to the notifications, 𝜅 = 0 is equivalent to
No Filtering).

Another hyperparameter that we varied by bucket was the adjust-
ment in send limit (see Section 2.1), which limits the total number
of notifications that a user may be sent in a day. We tested in-
creasing this both for the RL filtering approach and the no filtering
approach. In the RL filtering case, despite increasing the send limit,
the number of notifications sent decreased for 10 out of 18 (user
type, 𝜅) combinations. That is, unlike No Filtering, this approach
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Figure 2: (a) Empirical user behavior model. The x-axis in-
dicates how many consecutive positive, 𝑦 = 1, or negative,
𝑦 = 0, responses a user had immediately prior to their action
on the current notification; we call this their “streak.”. The
y-axis indicates how the observed open rate for a given (user
type, streak) pair deviates from user’s baseline open rate
(calculated over a non-overlapping time range), on average
across all users in the same user type. Across all user types a
positive streak value correlates with an increase in observed
open rate (and the converse is also observed). Although this
plot corrects for selection bias, it is showing correlations not
necessarily a causal relationship (we correct for this as dis-
cussed in section 3.2). However, if at least some correlation is
causal, then it shows a mechanism through which user’s fu-
ture open behavior is impact by notification decisions made
at the present time.
(b) We derive an optimal policy through recursive applica-
tion of the Bellman equation in an offline setting, using the
user behavior model in Figure 2a. We assume a fraction, 𝜅,
of the correlation observed in the empirical data is causal
- that is we assume that if the system can induce a user to
have positive open streaks (or reduce negative streaks) then
we can increase their probability of opening the next noti-
fications. With this model we can find the minimummodel
score such that sending a notification has higher expected
discounted future reward than not sending. The y-axis plots
theseminimumscores, “thresholds,” for the given (user type,
streak) pairs.
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Treatment Metrics

Filtering Policy Send Limit Total Sends Open Rate DAU Reachability

Percentile - - - - -

No Filtering 0 +16.78%** -11.97%** +0.41%** +0.08%

No Filtering +1 +22.10%** -14.40%** +0.46%** +0.00%

No Filtering +2 +24.95%** -15.52%** +0.50%** -0.08%

RL 𝜅 = 0.2 +2 -5.79%** +7.96%** +0.20%* +0.09%

RL 𝜅 = 0.4 0 -13.08%** +14.48%** -0.34%** +0.10%

RL 𝜅 = 0.6 +1 -12.65%** +14.72%** -0.22%** +0.08%
Table 1: Key metrics from the production A/B experiment. Results are reported relative to the heuristic baseline (∗ and ∗∗
denote statistical significance from the baseline at 𝑝 < 0.05 and 𝑝 < 0.01 respectively). The greedy policy, No Filtering, sends
more notifications, as expected. However, the open rate for these notifications opened is significantly lower and gets worse
as the send limit is increased. There is also some evidence that reachability declines as the send limit is raised. However, this
is not statistically significant because changes in reachability are rare events. Our method (RL) sends less notifications than
the baseline (and therefore substantially less than the no filter method) even when the send limit is increased. It obtains
much higher open rates than either baseline method and reachability does not decline with send limit. For larger values of 𝜅
(and lower send limits) there is slight loss in DAU compared to the baseline. However, the best RL condition (𝜅 = 0.2) sends
significantly less notifications than the baseline, obtains significantly increased in open rates and improves DAU slightly,
improving over the heuristic baseline in all metrics.

relies less on the send limit to limit the number of notifications sent,
but makes contextual decisions based on the score of the Tweet.

Due to the need to run the experiment for a long period of time
(to ensure any user changes are not short-term) and to minimize
the risk of creating a negative user experience, it is not possible to
run a full combinatorial sweep over all possible values of the send
limit, 𝜅 , and No Filtering. Nonetheless, we were able to run a large
enough experiment to have meaningful feedback on the results of
each method.

Table 1 shows the results of the experiments along different
metrics that we believe are good proxies for user experience. We
find that increasing the send limit while using No Filtering results
in small gains in DAU but harms reachability (since user changes
in reachability are a rare event, this was not statistically significant,
but trended down with send limit increases). This suggests that, for
the No Filtering policy, the send limit is well tuned. Compared to
both the percentile baseline and RL filtering, No Filtering results
in a significant decrease in the open rate that gets worse as the
send limit is increased. This is not surprising, in the No Filtering
approach more Tweets are sent and there is no limitation on their
score, so even low scoring Tweets may be sent.

The key result in the RL filtering approach is the finding (qual-
itatively robust to hyperparameter choices) that it is possible to
send significantly fewer notifications to users, resulting in a much
higher open rate and small improvements in reachability against
the baseline (not statistically significant). In the best performing RL
group, the number of notifications sent is decreased, the open rate is
increased and the DAU is up against the baseline, thus demonstrat-
ing improvements along all dimensions. This supports the claim
that by accounting for the long-term effect on user behavior, we
can improve the user experience.

Figure 3 shows the results broken down by user type. It shows
that the ratio of the number of sent notifications versus the number
of opened notifications is improved versus baselines in most user
types. However, for user types 1 and 2 the RL methods with an
increased send limit do not have as strong performance in terms of
relative opens. The data suggests that additional hyperparameter
tuning, for instance specific configurations per user type, would
result in even better overall performance.

Overall, the results demonstrate in a production experiment
on real users that notification performance can be significantly
improved by modeling the long term effects of notification decision
making on user behavior.

5 DISCUSSION
The use of RL to build recommender systems that optimize for LTV
is an active area of research. In this work, we have shown that a
model-based RL approach can outperform heuristics for decision
making for push notifications, measured in a production experiment
on real users along multiple dimensions. We have demonstrated an
approach to learning a simple model of user behavior using logged
data and shown that we can use this model to improve decision
making in sending notifications.

5.1 Future work
One of the key advantages of the RL policy introduced here is that
by deriving a policy in a principled way there is a much clearer
path to further improving the system. In particular, in our case,
further refinements in the user model can be directly incorporated
into improving decision making.

One of the most obvious ways to consider improving the user
model is to incorporate additional information that may predict
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Figure 3: Experiment results split by user type. Per plot, the x-axis indicates the policy used to make the send decision. The
y-axis shows the relative change against the heuristic-based system for two metrics: Sends (purple, total count of push noti-
fications) and Opens (orange, count of positive feedback, 𝑦 = 1, on Sends). When the change in Opens is more positive than
the change in Sends (orange bar > purple bar) this indicates users are opening a larger fraction of notifications; a desirable
property for a recommender system. No Filtering always sends more than the heuristic-based system, but this never results
in proportionally more Opens. For the least active user types (5 and 6) the increase in Opens is relatively small which could
contribute to increased user churn if users dislike these unopened notifications. Model-based RL policies using our method
demonstrate much better trade-offs in Opens compared to the change in volume of Sends. This effect is most pronounced for
some of the less active user types. In some cases, for example user type 3, our method is even able to issue less Sends while
achieving more Opens. Note the fraction of users of each type is not equal, with Table 1 demonstrating that the RL methods
perform well in aggregrate.

user behavior. This could include signals about the Tweet (such as
topic or time of day) and personalizing behavior models.

Another topic we are exploring is collecting data using stochastic
policies and also logging unsent notifications to facilitate causal
analysis [Gasse et al. 2021], thus removing the need for the 𝜅 hy-
perparameter. In addition to allowing us to build causal behavior
models with more confidence, this may also facilitate better explo-
ration and counterfactual policy estimates.

Model-based RL may in some cases be challenging, particularly
when user behavior is quite complex and multifaceted. Model-free
RL approaches sidestep this challenge by attempting to find the
optimal policy directly without explicitly modeling user behavior.
Model-free methods could be tried both in online policy optimiza-
tion [Schulman et al. 2017] or offline [Chen et al. 2019; Levine et al.
2020; Lillicrap et al. 2015]. Stochastic policies may also facilitate
exploring model-free RL approaches to the filtering problem. Yuan
et al. [2022] reported success with offline RL for push notifications.

In this work, we built a user model and optimized behavior
for different user types. Another direction of future improvement
would be to further personalize decision-making, by modeling the
preferences at the individual user level.
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A BELLMAN EXPECTATION SPEEDUP
Solving the Bellman equations 7, 8 can be substantially simplified
by noticing that (ignoring the rare min clipping)

E𝑥∼𝑝 ( · |𝑐 (𝑢)) [𝑄𝜋∗ (𝑢, 𝑥, 𝑠, 𝑎)] = 𝑄𝜋∗ (𝑢, 𝑥, 𝑠, 𝑎), ∀𝑢, 𝑠, 𝑎 where 𝑥 =

E𝑥 [𝑥] denotes the mean of the distribution. This avoids needing
to compute the full expectation and allows for memoization of the
value function, which greatly speeds up the recursive solver. Since
the only property of notifications used in this equation is open
probability, 𝑝 (𝑦 = 1|𝑢, 𝑥), we only need the mean open rate 𝑦.

This trivially holds for Equation 8, sincewhen a notification is not
sent at all, the properties of the notification do not affect the value.
By Markov assumption, the next notification is an independent
sample.

For Equation 7, it follows from noting that, though the next state
depends on 𝑥 , it does so in a deterministic way so that we can write
Equation 7 as:

𝑄𝜋∗
(𝑢, 𝑥, 𝑠, 𝑎) =𝑓 (𝑐 (𝑢), 𝑠)𝑝 (𝑦 = 1|𝑢, 𝑥) [𝑉𝑝𝑜𝑠 ]

+ (1 − 𝑓 (𝑐 (𝑢), 𝑠)𝑝 (𝑦 = 1|𝑢, 𝑥)) [𝑉𝑛𝑒𝑔] (9)

=𝑝 (𝑦 = 1|𝑢, 𝑥)
[
𝑓 (𝑐 (𝑢), 𝑠)𝑉𝑝𝑜𝑠 − 𝑓 (𝑐 (𝑢), 𝑠)𝑉𝑛𝑒𝑔

]
+𝑉𝑛𝑒𝑔
(10)

where𝑉𝑝𝑜𝑠 and𝑉𝑛𝑒𝑔 denote the terms of future value if the notifica-
tion is opened or not opened, which do not depend on 𝑝 (𝑦 = 1|𝑢, 𝑥).
Note that 𝑄𝜋∗ (𝑢, 𝑥, 𝑠, 𝑎) is linear in 𝑝 (𝑦 = 1|𝑢, 𝑥) (the only term
depending on 𝑥 ).
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