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Abstract—We introduce Pixels2Play-0.1 (P2P0.1), a foundation
model that learns to play a wide range of 3D video games
with recognizable human-like behavior. Motivated by emerging
consumer and developer use cases—AI teammates, controllable
NPCs, personalized live-streamers, assistive testers—we argue
that an agent must rely on the same pixel stream available
to players and generalize to new titles with minimal game-
specific engineering. P2P0.1 is trained end-to-end with behavior
cloning: labeled demonstrations collected from instrumented
human game-play are complemented by unlabeled public videos,
to which we impute actions via an inverse-dynamics model.
A decoder-only transformer with auto-regressive action output
handles the large action space while remaining latency-friendly
on a single consumer GPU. We report qualitative results show-
ing competent play across simple Roblox and classic MS-DOS
titles, ablations on unlabeled data, and outline the scaling and
evaluation steps required to reach expert-level, text-conditioned
control.

I. INTRODUCTION

Artificial intelligence (AI) has been applied to game playing
since its inception [1]]. Human performance in video games
correlates with intelligence [2]], [3]]. Games provide a cheap,
safe, and quantifiable environment for evaluating new ap-
proaches.

In parallel, large language models (LLMs) such as ChatGPT
[4] have ushered general-purpose Al into daily life. Most
commercial LLM offerings are now multi-modal visual lan-
guage models (VLMs), accepting images as input. However,
even with latency and cost constraints removed, state-of-the-
art VLMs struggle to finish the first level of the 1996 shooter
Quake [5].

We are working to close this gap with Pixels2Play 0.1
(P2P0.1), a foundation model trained end-to-end to play any
3D title from raw pixels. Like a novice human, P2P0.1 is ex-
pected to perform at a non-trivial level on unseen games with-
out per-game engineering, improving with additional exposure.
Crucially, our goal is to make the model text-conditioned.
Generating behavior in response to prompts such as “win using
only an ax” or “play defensively”, allowing a richer human-AI
interaction. The level of understanding required for this task
is significantly higher than many, particularly reinforcement
learning (RL) based approaches, which aim solely to speedrun
the game.

* Short paper.

A. Uses for such a model

In designing our model, we have benefited from the recent
robotics literature [6]—[8]], particularly in the area of learning
from unlabeled video data. Unlike in robotics, however, where
the goal is often to alleviate a boring or dangerous task,
humans play video games by choice for recreation. This leads
to an obvious question: why would we want an Al to play
video games?

We have been using early versions of our model to explore
a number of consumer experiences enabled by our work.

« Gaming companions. Co-operative titles are often more
enjoyable with a friend; When friends are unavailable,
our Al can keep the experience social.

o Adaptive NPCs. Pixel-driven control frees designers
from brittle scripts, enabling richer, emergent interactions
without game-specific code.

o Play-while-you-watch assistants. Players can let the
model handle repetitive sections and intervene when
desired - a personalized live streamer on demand.

o Automated QA. Text prompts let testers focus the agent
on edge cases (e.g. stress testing collision, exploring
hidden areas), accelerating bug discovery.

II. RELATED WORK

The literature on Al in game play is large; here we focus
on recent work on video games.

One focus has been the use of reinforcement learning (RL)
to train models to play games. This requires instrumenting the
game to extract a reward, such as the score or win/loss of
the game. For that reason, this approach is typically limited
to playing a single game. Most of the results are based on
model-free RL; [9] is a notable exception. Many approaches
also substitute engineered state representations for raw pixels,
adding additional game-specific engineering. With abundant
computation, RL can achieve superhuman play, [10]-[12],
although the resulting policies often differ markedly from the
human style.

Behavior cloning (BC) reframes control as supervised learn-
ing. [13], [14] applied behavior cloning in a single game,
while [15] trained a single model in multiple games. [16],
[17] have investigated the scaling laws of behavior cloning.
[18] used offline RL to generate human-like behavior, but in
an engineered state space rather than from pixels.

[19] trained a behavior cloning model to play Minecraft.
Most of the training data was “unlabeled” from online video
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sources. In order to use these data, this work first trained
an inverse dynamics model (IDM) from the labeled data and
then used this to impute labels on the unlabeled data. Similar
ideas have recently become popular in robotics, where learning
from unlabeled videos is now common. Most robotics papers
generate latent actions: an IDM infers latent controls that are
trained to encode information, via a forward dynamics (world)
model, useful for predicting the next frame. Policies are first
trained on those latent actions and later mapped to real motor
commands [6], [20], [21]].

III. METHODS
A. Policy model

Here we detail our architecture and training procedure for
a general game-playing policy P2P0.1.

As in recent work, the core network is a decoder-only
transformer [22] (Fig. |1| shows the architecture). Each video
frame is first tokenized (see the tokenizer details below) and
then fed to the policy transformer; we append a small number
of “thinking” tokens that allow extra computation before an
action is emitted. Both training and inference run at 20 Hz.

Actions are generated auto-regressively. Previous single
game studies collapsed the entire control vector into one
categorical prediction [19]. Our many-game setting must ac-
commodate the full keyboard—mouse space, including up to
four simultaneous key presses. An autoregressive factorization
avoids combinatorial explosion of the action space and sup-
ports any distribution over the action space. Continuous inputs
(e.g. mouse motion) are discretized, and all heads are trained
with cross-entropy loss. The trade-off is higher inference cost,
because the network is rolled forward once per sub-action; we
mitigate this with standard key-value-caching and the model
runs in real-time on a single RTX 5090 GPU.

A conventional causal mask blocks attention from future
tokens. That is overly restrictive here because all image tokens
arrive together in a single pass. Instead, we apply the causal
mask only to the auto-regressive action segment, as illustrated
in Fig. [] (all well as preventing attending to future frames).

Behavior-cloning agents often suffer causal confusion [23]:
e.g. keys are often held for multiple frames, and the network
may learn to copy the previous action rather than attend
to pixels. The offline metrics looked good, but the online
gameplay was poor until we masked past actions.

Masking prior actions sacrifices optimality in certain edge
cases. For instance, in the game Need for Speed, the player
may shift into gear at any point during the pre-race countdown;
without seeing earlier actions, the model cannot learn the grad-
ually increasing probability of shifting into gear. Empirically,
the policy remains adequate. We expect to enable the action
history once larger models and data sets reduce the overfitting
risk.

B. Inverse Dynamic Model (IDM)

Unlabeled gameplay videos greatly outnumber curated
demonstrations, so we rely on an Inverse Dynamics Model
(IDM) to turn those videos into additional training data. Two
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Fig. 1: Architecture of P2P0.1. Each video frame o; is
tokenised and fed to a decoder-only transformer, followed
by k learnable ‘“thinking” tokens ¢; that grant the model
extra computation time. The network then generates the sub-
actions a auto-regressively; the special token a' is a learnable
embedding that marks the start of the action sequence for step
1.
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Fig. 2: Attention mask used in our transformer policy (yellow
denotes 1 and blue 0). Tick marks show the boundaries of
successive inputs. The mask can be read by looking on the x-
axis for the query and translating up to see the parts of the key
masked out, e.g. tokens in 01 can attend to any other tokens in
01 and t1. The “staircases* are the autoregressive mask while
sampling the actions. Finally, you can observe in step 2 that
the prior actions in step 1 are masked out.

IDM approaches appear in the literature: a real-action model
that predicts explicit key/mouse actions [19], and a latent-
action model that predicts abstract action codes later mapped
to real actions [6], [7]], [24]. For its simplicity and ability
to scale, this work adopts the real-action variant; a direct
comparison with latent-action IDMs is left for future study.
Formally, the IDM is a classifier over the action at time ¢

given the surrounding image sequence:
ar ~ powm(ar | 01,02,...,04,...,07).

Our IDM architecture first encodes the frame stack with a



3D convolutional block [19]]. The resulting embeddings feed
a decoder-only transformer without a causal mask, allowing
the network to freely attend to past and future frames when
inferring the action for each timestep.

Training minimizes cross-entropy between the predicted dis-
tribution @, and the ground truth action a; on a labeled dataset.
After convergence, the IDM predicts actions for unlabeled
clips, yielding a much larger, imputed-labeled corpus. We then
train the policy on the full mix of labeled and imputed-labeled
data.

1) Image tokenizers: We have tested a variety of ap-
proaches to image tokenizers including using a pre-trained
(but with weights unfrozen) convolutional net [13], linear pro-
jections of image patches [25]], and pre-training a MagVitV2
tokenizer [26] on our dataset (both unlabeled and labeled
data). All three deliver broadly similar policy performance. We
have found (as in [27]) that using public pre-trained general
image tokenizers performed poorly, probably because these
tokenizers are typically trained on a large amount of photos,
which differ in their visual qualities from games. We also
notice that when playing a game the agent must attend to
small, fast-moving cues (e.g., the small ball in Blade Ball
or the miniature creature in Be a Snake), whereas standard
image-recognition models often only capture broader, scene-
level context.

2) Data collection: For unlabeled video data, we use public
data sources and commercially available VLMs to curate the
dataset. We implemented a two-step filtering process. First, an
initial filter is applied based on metadata such as the video’s
title, description, topic, and thumbnail image (when available).
This step involves querying a commercial VLM to assess the
relevance of the videos to our specified query. Second, the
full video content is processed by the VLM to segment and
remove non-gameplay scenes, which will not be useful for our
model training(e.g. introductions and some visual effects).

For labeled game playing, we use a combination of paid
annotators who are requested to play specific games and
are exploring the capture of gameplay (with consent) of our
product users.

We initially found a significant distributional shift between
model training data and inference, which we traced to two
factors: 1. During inference, no video compression takes place,
but training data (for practical reasons) must be compressed. 2.
The image resizing function differed between training (Python)
and inference (Rust). We alleviated the distributional shift by
using data augmentation to improve robustness, randomizing
compression quality during video compression, and using the
same resizing function between training and inference.

3) Evaluation: During training, we can easily observe
both training and validation loss. However, offline metrics
may not correspond to the online performance of the model.
A significant challenge for evaluation is that we wish our
model to play a large variety of games. Instrumenting even
a single game for automated performance evaluation is time-
consuming. For this reason, currently, we are primarily limited
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Fig. 3: Examples of Roblox and MS-DOS games P2P0.1 is
currently capable of playing. Videos of the policy in ac-
tion can be viewed at the accompanying blog post https://
blog.player2.game/p/pixels-to-play-one-model-any-game. We
intend to make the model available for interactive demos at
the conference.

to a qualitative evaluation of the model’s performance. This is
an area that we intend to develop further.

IV. EXPERIMENTS
A. General game playing

Currently, we have focused on simple Roblox games along
with some older MS-DOS titles. The Roblox platform has the
advantage that, as it reduces the barriers to game design, it has
a very wide variety of games. We are also learning MS-DOS
games as part of a goal to use automatic evaluation in the
future. In all games, we capture training data and evaluate
directly on end-user computers with no instrumentation or
modification to the games.

As discussed above, instrumented evaluation is an area of
active work. Qualitatively, we find that P2P0.1 is capable of
playing games currently at the level of an novice human (Fig.
[l that is, it can play most games we trained on, but a skilled
human player will outperform the model.

B. Unlabeled data helps generalization

This experiment measures how additional unlabeled data
affect generalization. The datasets follow Section [[lI-B2] We
train three variants:

o Full-Label, using 100 % of the training labeled data;

o Limited-Label, using 10 % of the training labeled data;

o Imputed-Label, using the same 10 % training labeled data
plus unlabeled data being imputed by IDM.

Hyper-parameters are identical across runs, and Imputed-Label
is matched to Full-Label for the total number of training
frames. All models are validated on the same held-out labeled
set.

Figures [] and [5] show the learning curves. Note that we
stopped the run of Limited-Label training once we clearly
observed overfitting to reduce the cost of resources. Limited-
Label overfits rapidly after around 30 epochs through the
limited dataset, while Full-Label and Imputed-Label continue
to improve throughout training. The best validation perplex-
ities are 1.40 (Limited-Label) and 1.08 (Augmented-Label),
a reduction 22% attributable to the imputed-label data. A
residual gap between full-label and enhanced-label highlights
the quality difference and remaining domain shift between true
labels and imputed labels.
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Fig. 4: Training loss curve across models with different data
mixture
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Fig. 5: Validation loss curve across models with different data
mixture

V. DISCUSSION

This paper reports on initial progress toward a foundation
model that produces human-like behavior directly from pixels
in 3D video games. We have also discussed early user-facing
prototypes—AI companions, smarter NPCs, and play-assist
tools—that both validate the approach and create new streams
of real gameplay data for future training.

Currently, P2P0.1 handles a range of relatively simple 3D
titles. The ongoing work focuses on two main fronts. First,
we continue to iterate on architecture and scaling, enlarging
both the labeled and unlabeled corpora and increasing model
capacity. Second, we are extending the temporal window
so that the agent can reason over much longer histories, a
prerequisite for competent play in more complex games.
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