arXiv:2510.16774v1 [cs.LG] 19 Oct 2025

Learning to play: A Multimodal Agent for 3D Game-Play

Yuguang Yue Irakli Salia

Samuel Hunt

Christopher Green Wenzhe Shi

Jonathan J Hunt
Player2
https://player2.game

Abstract

We argue that 3-D first-person video games are a challeng-
ing environment for real-time multi-modal reasoning. We
first describe our dataset of human game-play, collected
across a large variety of 3-D first-person games, which
is both substantially larger and more diverse compared to
prior publicly disclosed datasets, and contains text instruc-
tions. We demonstrate that we can learn an inverse dynam-
ics model from this dataset, which allows us to impute ac-
tions on a much larger dataset of publicly available videos
of human game play that lack recorded actions. We then
train a text-conditioned agent for game playing using be-
havior cloning, with a custom architecture capable of real-
time inference on a consumer GPU. We show the resulting
model is capable of playing a variety of 3-D games and
responding to text input. Finally, we outline some of the
remaining challenges such as long-horizon tasks and quan-
titative evaluation across a large set of games. The game-
playing videos from the model can be found at https :
//blog.player2.game/p/pixelslplay-v03-
text-conditioned. !

1. Introduction

Artificial intelligence (AI) has been applied to gameplay
since its inception [38]. Human performance in video
games correlates with intelligence [18, 26]. Games provide
a cheap, safe, and quantifiable environment for evaluating
new approaches [8, 41].

Recently, large language models (LLMs) such as Chat-
GPT [7] have ushered general-purpose Al into daily life.
Most commercial LLM offerings are now multi-modal vi-
sual language models (VLMs), accepting images as input.
However, even with latency and cost constraints removed,
current visual language models (VLMs) perform poorly at
game control, for example none can finish the first level

IThis workshop paper includes work previously published in [45] but
expands with significant new methodology and new and expanded results.

of the 1996 shooter Quake [46]. This shows that playing
video games provides a challenging domain for multimodal
real-time control [13]. Compared to other domains such
as robotic manipulation or self-driving, for which many
datasets are single-purpose [10, 44], video games require
modeling a much larger variation in behavior, objectives,
and physics.

In this work, we focus on 3-D first-person view games.
This provides some level of commonality across games
to support generalization (for example spatial reasoning)
while still providing a diverse set of tasks. Different games
(and even game play within the same game) have vastly dif-
fering objectives, limits on control (e.g. first-person shooter
vs. racing game) and a variety of physics and rendering en-
gines.

1.1. Contributions
Our contributions in this work are as follows:

* We describe the largest publicly disclosed dataset of high-
fidelity recordings of human video game play. This
dataset contains a wide variety of 3-D games. The dataset
is also annotated with text descriptions of the behavior
and the world that can be used for conditional behavior
generation.

* We introduce a multi-game inverse dynamics model
(IDM) trained on the above dataset that allows us to im-
pute low-level actions on an even larger dataset of pub-
licly available human gameplay (e.g. livestreamers play-
ing games, etc.).

* We describe a novel architecture that allows us to train a
text-conditioned model-free policy on the above data set
that is capable of running in real time on a high-end con-
sumer GPU. We describe and present empirical evidence
for many of our model architecture choices.

* We demonstrate the model is capable of playing a variety
of single games and responding to text conditioning.

* We outline the challenges that remain to provide
consumer-applicable behavior models in general 3-D
gameplay.

https://player2.game
https://blog.player2.game/p/pixels2play-v03-text-conditioned
https://blog.player2.game/p/pixels2play-v03-text-conditioned
https://blog.player2.game/p/pixels2play-v03-text-conditioned
https://arxiv.org/abs/2510.16774v1

2. Related work

The literature on Al in game play is large; here we focus on
recent work on video games.

One major area of focus has been the use of reinforce-
ment learning (RL). This requires instrumenting the game
to extract a reward, such as the score or win/loss of the
game. For that reason, this approach is typically limited to
playing a single game. Most works used a model-free ap-
proach; Hafner et al. [14, 15] are notable exceptions. Many
approaches also substitute engineered state representations
for raw pixels, adding additional game-specific engineering
[36]. With abundant computation, RL can achieve superhu-
man play [3, 22, 40], although the resulting policies often
differ markedly from the human style.

Behavior cloning (BC) re-frames control as supervised
learning. Kanervisto et al. [16], Pearce and Zhu [24] ap-
plied behavior cloning in a single game, while Raad et al.
[27] trained a single model to play multiple games. Pearce
et al. [25], Tuyls et al. [39] have investigated the scaling
laws of behavior cloning. Farhang et al. [12] used offline RL
to generate human-like behavior, but in an engineered state
space rather than from pixels. Kanervisto et al. [16] used
a single model to model both the world and behavior (but
modeled a single game). Yue et al. [45] trained a vision-only
model that directly predicts keyboard and mouse actions for
arange of 3-D games, without conditioning on text input.

Baker et al. [1] used behavior cloning to train a model to
play Minecraft. Most of the training data was “unlabeled”
from online video sources. In order to use these data, this
work first trained an inverse dynamics model (IDM) from
the labeled data and then used this to impute labels on the
unlabeled data. Our approach to using IDM to benefit from
unlabeled videos is similar; however, we attempt a diverse
set of games rather than a single game. Similar ideas have
recently become popular in robotics, where learning from
unlabeled videos is now common [29]. Most robotics pa-
pers generate latent actions: an IDM infers latent controls
that are trained to encode information, via a forward dynam-
ics model, useful for predicting the next frame. Policies are
first trained on those latent actions and later mapped to real
motor commands [4, 19, 43].

The works above are purely behavior generation, but not
multi-modal control. In particular, they lack any way to
steer the model, with the objective typically being generat-
ing human or game-winnning behavior. Lifshitz et al. [20]
provide one approach to add text conditioning to a behav-
ior model. One of the few works that we are aware of that
collected a multi-game dataset and trained a model to play
multiple games from pixels is Raad et al. [27]. They did
not disclose the size of the dataset (or model). In this work,
we target a model architecture that can perform inference in
real-time on a high-end consumer GPU.

Vision-to-action models are an exciting area of multi-

modal robotics research [5, 30, 35], mapping from language
and vision input to actions. Although many robotics mod-
els generate high frequency actions, they operate on visual
input at relatively low frequency (typically less than 4Hz)
[48], which would be too slow for competitive reaction time
in real-time gaming and most recent foundation models for
robotics require (multiple) server class GPUs to perform in-
ference. Although robotics applications are extremely chal-
lenging, along some dimensions, general game play can be
considered more varied with a wider variety of objectives.
Zheng et al. [47] used implicit world modeling in a latent
space to improve the generalization of a VLA.

3. Methods
3.1. Dataset

We set out to collect a large-scale dataset of high-quality
human game play across multiple 3-D games. The data con-
sists of trajectories of game play with the input seen by the
human (the pixels on the screen o;) and actions taken by the
human (keyboard and mouse actions) a;. A single episode
consists of the observations (o1, ...0,,) and the correspond-
ing actions the human took (as, ..., a,). As in Baker et al.
[1], we record at a frequency of 20 Hz.

We worked hard to ensure that the dataset is of high
quality. We recruited annotators with significant game-
playing experience. In addition, all new annotators and
game data were initially reviewed manually to check their
quality. Once an annotator and game tuple were consid-
ered of consistent quality, we then relied on random checks
and automated checks to ensure consistency. We instructed
annotators to record only gameplay in the 3-D world (e.g.
avoid menu selection prior to the gameplay beginning).

We created a number of automated checks, such as
checking that no key was held down throughout the record-
ing and that some keys/mouse movements were present
in the trajectory. In addition, we used a simple version
of our model-free policy (described later) to compute the
likelihood of the behavior seen in the trajectory. Trajec-
tories with unusually low likelihoods (often indicating an
anomaly, such as the annotator left the recording running
after the game finished or recorded the wrong screen) or that
violate automated checks were surfaced for manual review.

A common challenge of behavior cloning is the distribu-
tional shift. The dataset consists of trajectories generated
under human behavior, but the trajectories generated under
a model policy may result in a difference in state distribu-
tion, e.g. visiting states unseen in the training set. We sought
to mitigate this issue in two ways: collecting a large dataset
to cover as many states as possible and collecting “correc-
tion” trajectories. When collecting correction trajectories,
we allow the policy (described below) to control the game,
but we allow the human annotator to take control at any

time (for example, if the policy gets stuck or deviates from
desired behavior). We collect the full trajectory (including
while under model control) but record at each timestep if
the actions are human-generated. When training the policy,
we do not weight the loss on the model-chosen actions.

The resulting dataset has approximately 7000 hours of
high-quality human game-play (and growing). It is our in-
tention to make this dataset available on a non-commercial
basis for academic research.

3.1.1. Unlabeled data

For most popular commercial games, there is a vast amount
of publicly available video recordings of game play [11].
However, there are a number of challenges with using these
data: it is of highly varying quality and can be interspersed
or overlaid with non-game data, it is recorded at many dif-
ferent resolutions, frequencies, and aspect ratios, and most
crucially, the key/mouse actions taken by the player are not
available.

We curated a dataset of unlabeled (meaning without key
or mouse movement) trajectories of human gameplay. We
used public data sources and commercially available visual
language models (VLMs) to curate the dataset. We imple-
mented a two-step filtering process. First, an initial filter is
applied based on metadata such as the video’s title, descrip-
tion, topic, and thumbnail image (when available). This step
involves querying a commercial VLM to assess the rele-
vance of the videos to our specified query. Second, the full
video content is processed by the VLM to segment and re-
move non-gameplay scenes. We used a low framerate video
to balance cost and filter quality. We generated queries to
obtain videos based on a large set of popular game titles.

3.1.2. Text annotation

There has been increasing interest in vision-to-action mod-
els in the robotics community [6, 17]. Video games provide
a challenging and interesting domain for research in this
area; in many games, there are numerous different strategies
and choices that a text-conditioned model could choose to
play [11].

We therefore sought to add text descriptions of the be-
haviors exhibited in our dataset. The primary approach we
used was to use commercial VLMs to retrospectively anno-
tate the videos. That is, the instructions to our annotators
were to play the games as competent players in a variety of
different styles and to vary their choices during the game-
play. Although VLMs play games poorly, we found that
commercial VLMs were capable of retrospectively annotat-
ing the behavior during gameplay to a reasonable level of
quality.

However, a significant limitation of these services is
their tendency to automatically compress videos to a lower
frame rate. This downsampling can be detrimental for video
game annotation, as it creates temporal misalignments: an

instruction tied to a specific moment (e.g., turn right at
frame t) quickly becomes inaccurate at a subsequent frame
t + 1. To mitigate this, we iteratively refined our prompts
to elicit instructions that were less sensitive to precise tim-
ing. For instance, we prompted the model to generate an-
notations focused on descriptive commands (e.g., go down
the skull gate) rather than directional commands (e.g., go
left). Furthermore, we adjusted the prompt to filter out
high-frequency, repetitive events, such as "shooting" in a
first-person shooter or "eating small animals" in a snake-
style game. Our objective was to develop a prompt that was
detailed enough to be useful yet general enough to apply
across a large set of games with minimal manual curation,
thereby ensuring the scalability of our approach. The anno-
tation output format is as follows

{

"narrative": "<string>",
instructions": [
{
"start": "<timestamp>",
"end": "<timestamp>",
"instruction": "<string>"
b
{
"start": "<timestamp>",
"end": "<timestamp>",
"instruction": "<string>"

y

In addition to annotating behavior, we also generated text
descriptions of the game state, which could be used for a
text-conditioned world model. Using this retrospective an-
notation approach, we also annotated the unlabeled videos.

For a small percentage of trajectories, we requested that
players include a text description of their goal or behavior
(for example, by stating their intended behavior in advance
in our annotation tool). An area of future work is to record
communication between cooperating players in multiplayer
games as additional behavior annotations and to use the text
annotations to generate text-conditioned behavior models
while maintaining the constraint of real-time inference on
a consumer GPU.

3.2. Inverse Dynamics Model

Unlabeled gameplay videos greatly outnumber curated
demonstrations, so we rely on an Inverse Dynamics Model
(IDM) to turn those videos into additional training data.
Two IDM approaches appear in the literature: a real-action
model that predicts explicit key/mouse actions [1], and
a latent-action model that predicts abstract action codes

later mapped to real actions [23, 31, 43]. We adopt the
real-action variant for simplicity; a direct comparison with
latent-action IDMs is left for future study.

Formally, the IDM is a classifier over the action at time ¢
given the surrounding image sequence:

ar ~ powm(at | 01,02,...,0,...,07).

We used an identical architecture for the IDM model as that
used for the policy (next section). The only difference is
that we modify the masking because the IDM model does
not need to be causal (that is, it can observe future frames
when imputing an action). This has the benefit that the opti-
mizations or improvements made to the policy model trans-
lated without further manual effort into improvements to the
IDM model as well.

Training minimizes cross-entropy between the predicted
distribution a; and the ground truth action a; on the labeled
dataset. In order to ensure it is robust to many variations
observed in the unlabeled dataset, we use extensive data
augmentation such as cropping, perturbing the color space,
small rotations, etc. of the training data. After training the
IDM model, we use it to impute actions for the unlabeled
dataset.

3.3. Policy model

Here we detail our architecture and training procedure for
a general game-playing policy, which we call Pixels2Play
(P2P0.3).

The primary constraint we place on our model is the need
for the model to be capable of running in real-time (20 Hz)
on a high-end consumer GPU (Nvidia RTX 5090). The rea-
son for this constraint is that commercial applications re-
quire the model to run on end-user hardware.

In order to achieve this constraint, we do not use a pre-
trained VLM as a starting point. Instead, we use a custom
decoder-only transformer-based architecture (figure 1a) to
maximize inference efficiency. A typical VLM setup uses
hundreds of tokens per image. While these allow for the
model to be expressive and generalize, it significantly in-
creases the number of tokens per timestep which decreases
inference speed, drives VRAM usage, and limits the context
length (history) that the model can retain. For that reason,
we carefully design our architecture to minimize the num-
ber of tokens per timestep.

For the image encoding we use a pretrained image tok-
enizer based on the first 6 layers of a pre-trained efficientnet
[33] (as in Pearce and Zhu [24]) with a linear layer to project
the encoding into a small number (1-4) tokens (we denote
the number of image tokens n;). We find that model per-
formance is improved by not freezing the tokenizer but al-
lowing the weights to update during training. However, we
also find that starting from a pre-trained image tokenizer im-
proves performance compared to initializing the tokenizer

with random weights (figure A6). As expected, we find that
using more tokens per image improves performance (figure
Al13).

Much prior work has focused on training a model to
play a single game, which can often allow the use of a re-
duced action space [1, 24] that allowed these approaches to
model actions as a single combinatorial categorical choice.
However, as we wish the same model to master a variety
of games, the action space is much larger (the entire key-
board and mouse space, and we allow up to 4 simultane-
ous keypresses and 2 simultaneous mouse actions). Model-
ing this with the same combinatorial approach would be in-
feasible. Therefore, we model the action distribution auto-
regressively. To avoid increasing the number of tokens per
timestep of the primary transformer, we use a smaller ac-
tion decoder that takes a single action token and decodes it
auto-regressively into the full action space (somewhat anal-
ogous to the use of flow-matching or other approaches to
generating a complex action space seen in robotics founda-
tion models).

The policy transformer therefore only requires a small
number of tokens per timestep: image tokens, one text con-
ditioning token and one token for the action prediction.
However, we found that model performance improves (at
the cost of additional tokens) by introducing a “reasoning”
token ¢; to allow the model an additional timestep for rea-
soning before the output of an action. The final result is
n; + 2 tokens per timestep. We add a learned embedding to
the input tokens indicating the type of token (image, text,
reasoning, action out). In addition, at each layer of the
transformer we add rotatory position embeddings [32]. Of
course, during inference, we use key-value caching to re-
duce the computation complexity during inference. We use
a sliding-window attention to maintain a maximum cache
size and prevent the VRAM usage from growing indefi-
nitely.

The policy model (unlike the IDM) must be causal (that
is, it cannot make use of future observations to determine
action). However, due to the design of the model, we do
not use standard causal masking (Figure 1b). Since the to-
kenizer and reasoning steps will be computed at inference
time in a single forward pass, we unmask reasoning step ¢;
to 0;.

Behavior-cloning agents often suffer causal confusion
[9]: e.g. keys are often held for multiple frames, and the
network may learn to copy the previous action rather than
attend to pixels, this situation can be worse if the frequency
of the video is high. We find that allowing model predic-
tions at time ¢ to observe past action tokens a; results in
models that had strong offline metrics, but performed very
poorly when evaluated online.

To quantify this observation, we empirically estimated
the causality of the model by permuting 50% of observa-

tions in the validation set between different trajectories in a
batch while keeping the action sequence unchanged. We
then calculated the Kullback-Leibler divergence between
the action predictions of the original sequence and the per-
muted sequence. While an imperfect estimator, a larger
divergence indicates the model is making action choices
based on the content of the observations rather than non-
causally by using the prior action.

We find (Figure A10) that the model performs better
when masking out past action choices. Masking prior ac-
tions sacrifices optimality in certain cases. For instance, in
the FPS games where mouse movement is required, attend-
ing to prior actions is important for the model to adjust to
different varying mouse sensitivity settings; a human player
will calibrate their mouse movement based on past actions;
without seeing earlier actions, the model cannot make such
adjustments. Empirically, the policy remains adequate. De-
termining how to allow the model to observe past actions
while maintaining causality is an area of active considera-
tion.

We initially found that the models performed poorly due
to a significant distributional shift between model training
data and inference, which we traced to two factors: 1. Dur-
ing inference, no video compression takes place, but train-
ing data (for practical reasons) must be compressed. 2. The
image resizing function differed between training (Python)
and inference (Rust). The offline metrics looked promising,
but when evaluated online, the models often failed to take
any actions. We alleviated the distributional shift by us-
ing data augmentation to improve robustness, randomizing
compression quality during video compression, and using
the same resizing function between training and inference.

We have experimented with the use of sink tokens for
sliding window attention [2, 42]. In our approach, we
learn a small number of key and value tokens at each self-
attention layer, which are always inserted at the beginning
of the key/value sequence when computing self-attention
(including at inference time when using a key-value cache).
We found that the sink token appears to have little effect
(Appendix A.5).

The majority of our experiments used an 11-layer, 2048
dimensional policy transformer. With image tokenizer
and action decoder the total parameter count was approx-
imately 400 million. We used mixed precision training [21]
(weights represented as float32, activations as bfloat16, ex-
cept in RMSNorm layers which used float32 precision). All
training was performed on Nvidia 8xH100 and all evalua-
tion used an Nvidia RTX 5090.

3.3.1. Text annotation strategy

At each frame the model has an optional text annotation to-
ken (which can instead be set to x,,;; to indicate no new
text). We experimented with two types of text annotation
strategies: the first strategy was only adding the text an-

notation once on the start timestamp, denoted the single-
annotation-frame approach; and the second strategy was to
repeat the text annotation for all the frames between the
start frame index and the end frame index denoted repeat-
annotation-frame approach. The advantage of the single-
annotation-frame approach is to have better alignment be-
tween model training and inference - we can just add the
text to the frame whenever the user gives instruction dur-
ing inference without needing an explicit end time. In the
repeat-annotation-frame approach, the user or system will
need to determine explicitly when to end the text condi-
tioning. On the other hand, the repeat-annotation-frame
approach has a denser ratio of text annotations which can
improve the text model with a limited amount of data.
In our dataset, with the single-annotation-frame approach,
only have 0.1% of frames with text annotations whereas the
repeat-annotation-frame approach has ~ 10%—30% frames
with text annotations.

As outlined in section 5.1, we evaluated the model using
3 different text tokenizers.

3.3.2. Evaluation

During training, we can easily observe both training and
validation loss. However, offline metrics may not corre-
spond to the online performance of the model. A significant
challenge for evaluation is that we wish our model to play
a large variety of games. Instrumenting even a single game
for automated performance evaluation is time-consuming.
For this reason, currently, we are primarily limited to a qual-
itative evaluation of the model’s performance.

We have developed two simple internal games. A sim-
ple racing game and a first-person shooter that we have in-
strumented to allow running synchronously with the model
and provide quantitative evaluation. However, we found
that these evaluations were still noisy, as small changes in
the model or dataset composition can result in significant
changes in a single game.

Automating model evaluation in a variety of environ-
ments is an area of active work. For now, we primarily rely
on qualitative analysis of video recordings across a variety
of games.

Evaluation of text conditioning is even more challenging.
For some games, it is possible to reset the state to a specific
initial condition. This allows sampling the generated behav-
ior from the same state under differing text instructions. We
use this approach to test the instruction-following capabili-
ties of the model.

4. Experiments

We present a number of experiments. Due to space limita-
tions, some results are left for the appendices. Appendix
A.6 shows the importance of reasoning tokens on model
performance, Appendix A.5 shows that sink tokens do not

08¢

069

Action Decoder

Action Decoder

Lééé

Lééé

Policy Transformer

Text Image t Text
Tokenizer \ / Tokenizer Tokenizer
z1 r‘ 9

n";‘
P
0,

Qout

Key ldx

o1 a t az

Query Idx
(b)

Figure 1. (a) Architecture of P2P0.3. The core policy transformer and action decoder are both decoder-only transformers. Each timestep

begins with a text token x;.

Since many frame do not contain a text annotation there is a learned default value x,.; inputed on these

frames. This is followed by < 4 image tokens from video frame o; followed by a learnable “reasoning” token ¢; that grants the model

extra computation time. The policy transformer then outputs a single action token a;.

A smaller transformer, the action decoder, then

auto-regressively transforms and samples the single action token into the full action space. (b) Attention mask used in our transformer
policy (yellow denotes 1 and blue 0). Tick marks show the boundaries of successive inputs. The mask can be read by looking on the x-axis
for the query and translating up to see the parts of the key masked out, e.g. tokens in 0; can attend to o; and ¢; but not the future. Observe

in step 2 that the prior action token a; is masked out.

have a significant impact on model performance and ap-
pendix A.4 shows that the policy is non-causal when we
do not mask out past actions.

4.1. IDM model learns a lower perplexity than a
causal policy

We use the same model architecture for IDM and learning
a causal policy. The only difference is that the IDM can ob-
serve future frames (they are unmasked) to determine what
action took place and the IDM is not text-conditioned. As
expected, Figure A9 shows the IDM has a lower perplexity
action loss, both in training and validation. This demon-
strates that the IDM is making use of future frames to im-
prove its prediction of the actions.

4.2. Training with unlabelled data with IDM

We show we can benefit from training using unlabelled
game play videos (videos where the actions are not
recorded), commonly available publicly. We have three
stages of training to train with unlabelled data: We need to
first train an IDM model on labelled data (figure A9); Then
we train a policy model using a mixture of labelled data

and unlabelled data with imputed labels generated from the
IDM for the unlabelled data (analogous to LLM literature,
we refer to this stage as “pre-training”; Finally, we finetune
the pretrained policy model on only the labelled data with a
smaller learning rate. In these experiments, we had approxi-
mately 4x more unlabelled data (16000 hours), although we
intend to increase this amount in the future.

After the pre-training stage the model has a significantly
higher perplexity than one trained only on the high-quality
labelled dataset (figure A7a and figure A8). However, when
the pre-trained model is fine-tuned using only labelled data
it reaches significantly lower training (figure A7b) and val-
idation perplexity (figure 2), demonstrating the pre-training
phase improves generalization.

4.3. General game playing

Currently, we have focused on simple Roblox games, older
MS-DOS titles, and modern first person shooter and racing
games. The Roblox platform has the advantage that, as it re-
duces the barriers to game design, it has a very wide variety
of games. We are also learning MS-DOS games as part of a
goal to use automatic evaluation in the future. In all games,

blade-ball-validation

fps-mixed-validation

)/

hovercraft-validation

Figure 2. Validation metrics for finetuned models compared with
baseline model trained only on labeled data. We consistently ob-
serve fine-tuning the pre-trained model results in improved perfor-
mance, indicating the additional unlabelled data improves model
generalization.

we capture training data and evaluate directly on end-user
computers with no instrumentation or modification to the
games, with the games running in realtime.

As discussed above, instrumented evaluation is an area
of active work. Qualitatively, we find that P2P0.3 is cur-
rently capable of playing simple games at the level of a
novice human (Figure 3), but performs poorly in more com-
plex tasks or games that require longer-term planning.

5. Text Conditioned Model Experiments

From figure 4a we can see the repeat-annotation-frame ap-
proach has a slightly better validation loss, which is ex-
pected as it used more text annotation signals. We repeat the
text annotations a maximum number of times, then when is-
suing text conditioning during inference we always persist it
for this maximum, rather than trying to determine a variable
end time.

5.1. Text tokenizer choice

We experiment with three different text tokenizers: CLIP
text tokenizer [28], Gemma text tokenizer [34] and Siglip2
text tokenizer [37]. We freeze the tokenizers during training
and we obtain the instruction sentence embedding by aver-
aging over the token embeddings. As shown in figure 4b,
the CLIP text tokenizer performed slightly better than the
rest.

Figure 3. Examples of a MS-DOS game, Roblox, and first per-
son shooters P2P0.3 is currently capable of playing. For simple
games such as MS-DOS Need For Speed or Roblox “Be a Snake”
or simple FPS the model is capable of gameplay at the level of
non-expert human. However, for games which require longer-
term planning such the model struggles to complete levels. Video
of gameplay can be seen view at https://blog.player?2.
game/p/pixels2play-v03-text-conditioned.

https://blog.player2.game/p/pixels2play-v03-text-conditioned
https://blog.player2.game/p/pixels2play-v03-text-conditioned

overall-validation

<

(a) Validation perplexity for the two different
text annotation strategies (see section 3.3.1)

overall-validation

—_—

(b) Validation perplexity using different text
tokenizers.

Figure 4. Validation perplexity

5.2. Qualitative evaluation of the text instructions

To evaluate the impact of text instructions, we resume the
game from a set checkpoint and observe the model behavior
conditioned on varying text annotations qualitatively. We
choose to use Quake and Doom for our qualitative evalua-
tion because it is simple to set checkpoints in those single-
player games, and it is easy to observe different model be-
haviors.

We set the checkpoints at Quake and Doom as shown in
figure 5. For the Doom checkpoint (figure 5a), there is a
shotgun on the left and a red-cross door on the right. We
tried three text instructions: (1) no text input; (2) “pick up
the shotgun”; (3) “proceed to the red-cross door.” For the
Quake checkpoint (figure 5b), there is a red button on the
wall and the player needs to go to the wall to press the button
so that the bridge deploys. We tried two text instruction:
(1) no text input; (2) “move to the wall and press the red
button".

We evaluated the model performance by counting how
many times the model achieves the instructions in a short
time duration (5-10 seconds). We performed 5 trials for
each condition. The results are shown in table 1. These
provide clear evidence that the model can follow the text
instructions.

6. Discussion

This paper outlines the challenges of text conditioned con-
trol in the diverse world of 3-D video games. We have
outlined an approach to training a model-free policy using
large-scale behavior cloning that is both text conditioned
and runs in realtime on a consumer PC. More generally, we
argue that the dataset and domain of 3-D games remains a

(a) checkpoint screenshot of Doom

(b) checkpoint screenshot of Quake

Figure 5. To evaluate the text conditioning we start the model from
the same checkpoint with differing text prompts.

Doom picked up shotgun | reached door
no text input 1/5 1/5
pick up shotgun | 5/5 0/5
proceed to the 5 2/5

red-cross door
Quake pressed the button
no text input 0/5

move to the wall
and press the red | 2/5
button

Table 1. Success rate (out of 5 attempts) for each task evaluating
text conditioning. We see clear evidence the model behavior is
steered by the text conditioning.

challenging area for future work.

Currently, P2P0.3 handles a range of relatively simple 3-
D titles with some level of text control. The ongoing work
focuses on two main fronts. First, we continue to iterate
on architecture and scaling, enlarging both the labeled and
unlabeled corpora and increasing model capacity. Second,
we are extending the temporal window so that the agent can
reason over much longer histories, a prerequisite for com-
petent play in more complex games.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga,
Jie Tang, Adrien Ecoffet, Brandon Houghton, Raul Sampe-
dro, and Jeff Clune. Video pretraining (vpt): Learning to act
by watching unlabeled online videos. Advances in Neural
Information Processing Systems, 35:24639-24654, 2022. 2,
3,4

Federico Barbero, Alvaro Arroyo, Xiangming Gu, Christos
Perivolaropoulos, Michael Bronstein, Petar Velickovié, and
Razvan Pascanu. Why do llms attend to the first token? arXiv
preprint arXiv:2504.02732, 2025. 5

Christopher Berner, Greg Brockman, Brooke Chan, Vicki
Cheung, Przemystaw Debiak, Christy Dennison, David
Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.
Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680, 2019. 2

Johan Bjorck, Fernando Castafieda, Nikita Cherniadev,
Xingye Da, Runyu Ding, Linxi Fan, Yu Fang, Dieter Fox,
Fengyuan Hu, Spencer Huang, et al. GrOOt nl: An open
foundation model for generalist humanoid robots. arXiv
preprint arXiv:2503.14734,2025. 2

Kevin Black, Noah Brown, Danny Driess, Adnan Es-
mail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy
Groom, Karol Hausman, Brian Ichter, et al. #0: A
vision-language-action flow model for general robot control.
corr, abs/2410.24164, 2024. doi: 10.48550. arXiv preprint
ARXIV.2410.24164. 2

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail,
Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom,
Karol Hausman, Brian Ichter, et al. mp: A vision-language-
action flow model for general robot control. arXiv preprint
arXiv:2410.24164, 2024. 3

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural in-

formation processing systems, 33:1877-1901, 2020. 1

Anthony Costarelli, Mat Allen, Roman Hauksson, Grace
Sodunke, Suhas Hariharan, Carlson Cheng, Wenjie Li,
Joshua Clymer, and Arjun Yadav. Gamebench: Evaluat-
ing strategic reasoning abilities of 1lm agents. arXiv preprint
arXiv:2406.06613,2024. 1

Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal
confusion in imitation learning. Advances in neural informa-
tion processing systems, 32,2019. 4

Jeffrey Delmerico, Titus Cieslewski, Henri Rebecq, Matthias
Faessler, and Davide Scaramuzza. Are we ready for au-
tonomous drone racing? the uzh-fpv drone racing dataset. In
2019 International Conference on Robotics and Automation
(ICRA), pages 6713-6719. IEEE, 2019. 1

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar,
Yuncong Yang, Haoyi Zhu, Andrew Tang, De-An Huang,
Yuke Zhu, and Anima Anandkumar. Minedojo: Building
open-ended embodied agents with internet-scale knowledge.
Advances in Neural Information Processing Systems, 35:
18343-18362, 2022. 3

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

Alexander R Farhang, Brendan Mulcahy, Daniel Holden,
Tain Matthews, and Yisong Yue. Humanlike behavior in a
third-person shooter with imitation learning. In 2024 IEEE
Conference on Games (CoG), pages 1-4. IEEE, 2024. 2
Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy
Lillicrap. Mastering diverse domains through world models.
arXiv preprint arXiv:2301.04104, 2023. 1

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy
Lillicrap. Mastering diverse control tasks through world
models. Nature, pages 1-7, 2025. 2

Danijar Hafner, Wilson Yan, and Timothy Lillicrap. Train-
ing agents inside of scalable world models. arXiv preprint
arXiv:2509.24527,2025. 2

Anssi Kanervisto, Dave Bignell, Linda Yilin Wen, Mar-
tin Grayson, Raluca Georgescu, Sergio Valcarcel Macua,
Shan Zheng Tan, Tabish Rashid, Tim Pearce, Yuhan Cao,
et al. World and human action models towards gameplay
ideation. Nature, 638(8051):656-663, 2025. 2

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao,
Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan
Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An
open-source vision-language-action model. arXiv preprint
arXiv:2406.09246, 2024. 3

Athanasios V Kokkinakis, Peter I Cowling, Anders Drachen,
and Alex R Wade. Exploring the relationship between video
game expertise and fluid intelligence. PloS one, 12(11):
e0186621, 2017. 1

Anthony Liang, Pavel Czempin, Matthew Hong, Yutai Zhou,
Erdem Biyik, and Stephen Tu. Clam: Continuous latent ac-
tion models for robot learning from unlabeled demonstra-
tions. arXiv preprint arXiv:2505.04999, 2025. 2

Shalev Lifshitz, Keiran Paster, Harris Chan, Jimmy Ba, and
Sheila Mcllraith. Steve-1: A generative model for text-to-
behavior in minecraft. Advances in Neural Information Pro-
cessing Systems, 36:69900-69929, 2023. 2

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory
Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael
Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed
precision training. arXiv preprint arXiv:1710.03740, 2017.
5

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, loannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013. 2

J Bjorck Nvidia, F Castaneda, N Cherniadev, X Da, R Ding,
L Fan, Y Fang, D Fox, F Hu, S Huang, et al. Gr00t nl:
An open foundation model for generalist humanoid robots.
ArXiv, abs/2503.14734, 2025. 4

Tim Pearce and Jun Zhu. Counter-strike deathmatch with
large-scale behavioural cloning. In 2022 IEEE Conference
on Games (CoG), pages 104-111. IEEE, 2022. 2, 4

Tim Pearce, Tabish Rashid, Dave Bignell, Raluca
Georgescu, Sam Devlin, and Katja Hofmann. Scaling laws
for pre-training agents and world models. arXiv preprint
arXiv:2411.04434,2024. 2

Heinrich Peters, Andrew Kyngdon, and David Stillwell.
Construction and validation of a game-based intelligence as-

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

sessment in minecraft. Computers in Human Behavior, 119:
106701, 2021. 1

Maria Abi Raad, Arun Ahuja, Catarina Barros, Frederic
Besse, Andrew Bolt, Adrian Bolton, Bethanie Brownfield,
Gavin Buttimore, Max Cant, Sarah Chakera, et al. Scal-
ing instructable agents across many simulated worlds. arXiv
preprint arXiv:2404.10179, 2024. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748-8763. PmLR, 2021. 7

Zhongwei Ren, Yunchao Wei, Xun Guo, Yao Zhao, Bingyi
Kang, Jiashi Feng, and Xiaojie Jin. Videoworld: Exploring
knowledge learning from unlabeled videos. In Proceedings
of the Computer Vision and Pattern Recognition Conference,
pages 29029-29039, 2025. 2

Katrin Renz, Long Chen, Elahe Arani, and Oleg Sinavski.
Simlingo: Vision-only closed-loop autonomous driving with
language-action alignment. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pages 11993—
12003, 2025. 2

Dominik Schmidt and Minqi Jiang. Learning to act without
actions. arXiv preprint arXiv:2312.10812, 2023. 4

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen
Bo, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding. Neurocomputing, 568:127063,
2024. 4

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105-6114. PMLR,
2019. 4

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert
Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Riviere, Mihir Sanjay Kale, Juliette Love, et al.
Gemma: Open models based on gemini research and tech-
nology. arXiv preprint arXiv:2403.08295, 2024. 7

Gemini Robotics Team, Saminda Abeyruwan, Joshua
Ainslie, Jean-Baptiste Alayrac, Montserrat Gonzalez Are-
nas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch,
Maria Bauza, Michiel Blokzijl, et al. Gemini robotics:
Bringing ai into the physical world. arXiv preprint
arXiv:2503.20020, 2025. 2

Gerald Tesauro. Practical issues in temporal difference learn-
ing. Advances in neural information processing systems, 4,
1991. 2

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muham-
mad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil
Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil
Mustafa, Olivier Hénaff, Jeremiah Harmsen, Andreas
Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-
language encoders with improved semantic understanding,
localization, and dense features, 2025. 7

Alan M Turing. Digital computers applied to games. Faster
than thought, 1953. 1

Jens Tuyls, Dhruv Madeka, Kari Torkkola, Dean Foster,
Karthik Narasimhan, and Sham Kakade. Scaling laws for

(40]

(41]

[42]

[43]

[44]

(45]

[40]

[47]

(48]

imitation learning in single-agent games.
arXiv:2307.09423, 2023. 2

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaél Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. nature, 575(7782):350-354,
2019. 2

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar,
Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandku-
mar. Voyager: An open-ended embodied agent with large
language models. arXiv preprint arXiv:2305.16291,2023. 1
Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han,
and Mike Lewis. Efficient streaming language models with
attention sinks. arXiv preprint arXiv:2309.17453,2023. 5
Seonghyeon Ye, Joel Jang, Byeongguk Jeon, Sejune Joo,
Jianwei Yang, Baolin Peng, Ajay Mandlekar, Reuben Tan,
Yu-Wei Chao, Bill Yuchen Lin, et al. Latent action pretrain-
ing from videos. arXiv preprint arXiv:2410.11758, 2024. 2,
4

Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
2636-2645, 2020. 1

Yuguang Yue, Chris Green, Samuel Hunt, Irakli Salia, Wen-
zhe Shi, and Jonathan J Hunt. Pixels to play: A foundation
model for 3d gameplay. In 2025 IEEE Conference on Games
(CoG), pages 1-4. IEEE, 2025. 1, 2

Alex L. Zhang, Thomas L. Griffiths, Karthik R. Narasimhan,
and Ofir Press. Videogamebench: Can vision-language mod-
els complete popular video games?, 2025. 1

Ruijie Zheng, Jing Wang, Scott Reed, Johan Bjorck, Yu
Fang, Fengyuan Hu, Joel Jang, Kaushil Kundalia, Zongyu
Lin, Loic Magne, et al. Flare: Robot learning with implicit
world modeling. arXiv preprint arXiv:2505.15659, 2025. 2
Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted
Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Stefan Welker,
Ayzaan Wahid, et al. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. In Conference on
Robot Learning, pages 2165-2183. PMLR, 2023. 2

arXiv preprint

A. Additional figures

A.l. Frozen Image Tokenizer Performs Worse

Training Perplexity

— Frozen Image Tokenizer Baseline
1.4
1.35
1.3
trainer/global_step
20k 40k 60k 80k
(@

Validation Perplexity

— Frozen Image Tokenizer — Baseline

1.35

trainer/gtobal=step

20k 40k 60k 80k

(b)

Figure A6. Freezing the pre-trained image tokenizer results in significantly worse training (a) and validation (a) perplexity. One reason
could be that the tokenizers are not pretrained on gaming images so allow them to adapt improves the model.

A.2. Pre-training metrics

training_perplexity

= pretrained model = baseline

200M 400M 600M 800M 16 1.2G 1.4G

(@

training-perplexity

— finetuned model = baseline

-
w
&

500M 16 1.5G6

(b)

Figure A7. Pre-training on unlabelled data using imputed labels results in worse training (a) and validation perplexity (figure A8). However,
fine-tuning the pretrained model on labelled data improved training perplexity slightly (b) and validation perplexity significantly (figure 2).

hovercraft-validation
retrained model = baseline

118

1.175

117

1.165
rainer/global_step
—,

20k 30k 40k 50k 60k 70k 80k

blade-ball-validation
= baseline

20k 30k 40k 50k 60k 70k 80k

fps-mixed-validation
= baseline

1.42

1.38

trainer‘global,stepM
20k 30k 40k 50k 60k 70k 80k

Figure A8. Validation metrics between pretrained models and a baseline model which is trained only on labeled data on 3 different
environments (internal racing game hovercraft, Roblox Blade Ball, a mix of popular first person shooters). We consistently observe across
environments the pretrained models (without any fine-tuning stage) with a higher validation perplexity (this is consistent with training
perplexity, see figure A7) compared to training only on labelled data.

A.3. IDM model learns a lower perplexity than a causal policy

= Causal Policy = IDM = Causal Policy = IDM
2
1.35 1.35=45,
[
I ;\
13 13 8
c
o
1.25 125 =
®
°
1.2 12 =2
e 'WWWMWWM* . \
11 11 Traming step
40k 50k 60k 70k 80k 90k 40k 50k 60k 70k 80k 90k
(a) Training (b) Validation

Figure A9. Training and validation perplexity of a causal policy compared with the IDM. The IDM has a lower perplexity as expected:
unlike the causal policy, when predicting which action took place the IDM can make use of information in future frames.

A.4. Allowing the policy to observe prior actions harms causality

Figure A10 demonstrates the importance of prior action masking in learning a causal model. Without action masking, the
model learns a non-causal solution which performs well on offline metrics (including a validation) but is useless in practice
as it largely ignores the content of the observations.

training-perplexity overall-validation
— baseline rior-ac 3_labelled_bc = baseline-20250628110904_stage3_labelled_bc
1.55
17
1.6 15
15
1.45
14
13 1.4
1.2
; 135 :
traifier/global=step’ trainer/globat=step.
5k 10k 15k 20k 25k 5k 10k 15k 20k
(a) (b)
blade-ball - keys fps-mixed - keys
654 0.4 559

keys

Figure A10. When prior actions are unmasked (no-prior-action-masks) both training (a) and validation losses (b) are lower. However, the
model performs extremely poorly in practice. Causal analysis on two games blade-ball ((c)) and a variety of first person shooters ((d))
provides an explanation. When not masking out prior actions the models tend to learn a non-causal solution by copying the prior action,
thus there is little change is action prediction when perturbing the observations. This is resolved by masking out prior actions.

A.5. Sink token

We found that using a sink token (see Methods) did not significantly impact performance (figure A11).

Training Perplexity Validation Perplexity
— With Sink Token =— Without Sink Token — With Sink Token — Without Sink Token

Validation Pegblexj

20k 40k 60k 80k

(@ (b)

Figure A11. Training (a) and validation (b) perplexity comparing the use of a sink token. We find that the use of sink tokens did not appear
to improve model metrics.

A.6. Reasoning Token

We found that the use of a reasoning token between the observation input and action output step (see Methods) significantly
improved model performance (figure A12).

training_perplexity_key overall_validation_perplexity_key
— No reasoning token = With reasoning token = Noreasoning token = With reasoning token

Validation Perp!

138
136 \
1.34
—lO0E StCD |
20k 40k 60k 80k 20k 40k s;k 80k
(@ (b)

Figure A12. Training (a) and validation (b) perplexity comparing the use of a reasoning token. We found both training and validation
metrics are improved significantly by allowing the model an additional “reasoning” step.

A.7. Image Tokens

N Image Tokens

= 1lmage Token + 1 Thinking Token + 1 Sink Token = 1Image token + 4 Thinking tokens + 1 Sink Token
= 2Image tokens + 1 Thinking token + 1 Sink Token = 8 Image tokens + 1 Thinking token + 1 Sink Token
= 4Image Tokens + 1 Thinking token + 1 Sink Token
— 4 |mage Tokens + 1 Thinking token + 1 Sink token + Axial RoPE

1.32
c
131 &
=
13 =
1.29
40k 50k 60k 70k 80k 90k

Figure A13. Experiments varying the number of image tokens used to represent each image. We find more image tokens improves
performance, more so than increasing reasoning tokens.

	Introduction
	Contributions

	Related work
	Methods
	Dataset
	Unlabeled data
	Text annotation

	Inverse Dynamics Model
	Policy model
	Text annotation strategy
	Evaluation

	Experiments
	IDM model learns a lower perplexity than a causal policy
	Training with unlabelled data with IDM
	General game playing

	Text Conditioned Model Experiments
	Text tokenizer choice
	Qualitative evaluation of the text instructions

	Discussion
	Additional figures
	Frozen Image Tokenizer Performs Worse
	Pre-training metrics
	IDM model learns a lower perplexity than a causal policy
	Allowing the policy to observe prior actions harms causality
	Sink token
	Reasoning Token
	Image Tokens

